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A B S T R A C T   

Methods: for quantifying vegetative cover across landscapes have, until recently, been limited to ground-based 
surveys or remote sensing via satellites or aircraft, both of which can limit the spatial scale of resulting data. 
Unmanned Aircraft Systems (UAS) can efficiently collect high-resolution sub-decimeter imagery of landscapes; 
geographic, object-based image analysis (GEOBIA) of the collected imagery can then be used to estimate 
vegetation cover. To date, few researchers have utilized open-source programs for GEOBIA. We developed 
GEOBIA methods in the open-source Program R to analyze visible spectrum UAS imagery from four sites in the 
Chihuahuan Desert of North America. These desert grasslands are difficult to quantify due to the patchiness of 
ground cover at small scales (e.g. <1 m) and the rarity of shrubs on the landscape. We used site-specific training 
data and multiple segmentation parameters to create vegetative and shrub cover data layers at a 15 cm reso
lution. We report overall accuracies of 77.2%–88.8% for vegetation classification and 95.7%–99.2% for shrub 
classification. Our work is some of the first to use open-source GEOBIA in grasslands and provides objective, 
reproducible data layers of desert vegetation, particularly shrubs, at the spatial scale necessary to inform 
management and conservation of Chihuahuan Desert grassland communities.   

1. Introduction 

Ecologists often rely on ground-based survey methods to charac
terize habitat as a component of wildlife monitoring programs. Vege
tation structure and composition are important aspects of habitat that 
often drive differences in demographic vital rates (Halstead et al., 2019), 
population trends (Hunt et al., 2018), and patterns of habitat use 
(Shaffer and DeLong, 2019). Rapid-sampling methods (e.g. ocular esti
mates) to capture information on vegetation cover and height, although 
widely used in most monitoring protocols, can be imprecise (God
inez-Alvarez et al., 2009), suffer from observer bias, and often only 
assess small-scale areas. These approaches often miss important infor
mation and landscape context, such as the location of an isolated tree or 
the range of vegetation heights, integral to understanding the mecha
nistic relationship between habitat and population metrics of interest 
(Glisson et al., 2015). 

Accurate and ecologically representative assessments of vegetation 
may be particularly challenging in habitats with patchy vegetation (e.g. 
Huenneke et al., 2001) or during periods of dormancy (Marsett et al., 
2006). The grasslands of the Chihuahuan Desert of the southwestern US 

and northern Mexico are prime examples of such patchy landscapes; 
these grasslands are characterized by a mosaic of grasses, forbs, and 
shrubs and interspersed with bare ground. Grazing pressure, soil type, 
and localized precipitation add to this heterogeneity that varies sub
stantially between years. In particular, shrubs can be difficult to accu
rately quantify in desert grasslands with rapid ground-based methods 
because of their low density and spatially variable distribution. 

Shrubs, while difficult to quantify, remain an important ecological 
driver within desert rangelands. Native shrubs such as creosote (Larrea 
tridentata), juniper (Juniperus), and mesquite (Prosopis glandulosa) are 
encroaching in Chihuahuan Desert grasslands (Laliberte et al., 2004). 
This shift can be largely attributed to increasing temperatures and at
mospheric CO2 (Polley et al., 2003), mismanaged grazing, prairie dog 
declines, and spatial contagion (Bestelmeyer et al., 2018). As the density 
and composition of shrubs on the landscape changes, wildlife is directly 
affected by this change. For example, populations of grassland song
birds, an avian group in precipitous decline (− 53.2% over 4 decades; 
Rosenberg et al., 2019), are tightly linked with shrub cover on their 
wintering grounds. Abundance and winter survival are both negatively 
associated with increasing shrub cover and height (Macias-Duarte el al., 
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2018). Conversely, in young pronghorn (Antilocapra americana), sur
vival increases with shrub density on grassland landscapes (Jacques 
et al., 2015). Shrub encroachment is also one of the driving forces 
behind grassland loss in the Chihuahuan Desert (Baez and Collins, 
2008), and has negative implications for use of these landscapes as 
rangelands (Anadón et al., 2014). 

Recent advances in aerial photography and machine learning can 
now facilitate the remote sensing of shrubs and other vegetative cover at 
finer spatial resolutions and over continuous areas much more effec
tively than traditional surveys. These approaches present a potential 
cost-effective alternative to ground-based estimation. Although vegeta
tion mapping across very large landscapes (e.g. countries or continents) 
using satellite imagery has been commonplace for decades (Fuller et al., 
1994), these data are often either collected at spatial resolutions too 
coarse (e.g. 30 m Landsat Operational Land Imager; U.S. Geological 
Survey, 2016) to capture small objects such as shrubs <0.5 m in diam
eter or, in the case of finer resolution satellites, under variable sensor 
and atmospheric conditions giving objects from the same class different 
spectral properties (Chen et al., 2018). While manned aircraft can collect 
imagery over large areas at finer resolutions, the high cost and strict 
regulations often limit the flexibility of this platform for collecting aerial 
imagery (Chen et al., 2018). Historically, shrubland and grassland eco
systems are particularly challenging to characterize using satellite im
agery because of the small footprint of individual species (Lu et al., 
2016), large proportion of dead grass (Yang and Guo, 2014), and vari
able effects of soil reflectance, especially in areas with dead grass 
(Montandon and Small, 2008). This combination can make these arid 
lands appear homogeneous in coarser aerial imagery. Monitoring shrub 
encroachment in desert landscapes using these methods has therefore 
been challenging, despite a clear need to do so to inform mitigation 
action in these areas. 

Recently there has been significant progress in automated vegetation 
classification in desert grasslands from imagery collected via Unmanned 
Aircraft Systems (UAS; Laliberte et al., 2004; Laliberte and Rango, 2011; 
Dong et al., 2019; Rampant et al., 2019). UAS are increasingly used to 
characterize vegetation because of their ability to collect fine spatial 
resolution imagery across both space and time for a relatively low cost 
(Anderson and Gaston, 2013) and high degree of accuracy (Ma et al., 
2017). This imagery can be used to generate data layers including 
spectral reflectance, surface elevation (digital surface maps, or DSMs), 
and ground elevation (digital terrain maps, or DTMs) of landscapes with 
a spatial resolution on the order of centimeters. This level of detail was 
not previously possible using imagery collected by satellites or manned 
aircraft. Further processing of these layers can produce unparalleled 
high-resolution, spatially-explicit data such as canopy height models 
(Cunliffe et al., 2016), crop maps (Pajares, 2015), biomass estimates 
(Zhang et al., 2018a), and vegetative cover maps including shrub and 
grass species (Laliberte and Rango, 2011). 

Like any technology, UAS have their share of shortcomings and 
challenges (see Hassler and Baysal-Gural, 2019). Helicopter-style 
rotorcraft UAS (e.g. quadcopters, octocopters) have high maneuver
ability but eat up battery life quickly, limiting the area they are able to 
survey. Fixed-wing UAS can use less battery life for the amount of area 
surveyed but lack the positioning accuracy provided using rotorcrafts. 
All UAS are ultimately limited by the amount of batteries users are able 
to procure and charge for a day of surveying as well as the weather 
conditions necessary to successfully collect high-quality imagery. As a 
result, most studies using UAS technology to quantify vegetative land
scapes are limited to smaller areas (e.g. Rampant et al., 2019). Further, 
there is sometimes a significant initial cost for equipment and time 
needed to train UAS pilots and familiarize them with the equipment. 

Another challenge is the classification of UAS-derived composite 
imagery into data layers that estimate characteristics of vegetative 
cover, including shrubs. While pixel-based approaches have tradition
ally been used to accomplish this (Hussain et al., 2013), a recent para
digm shift towards object-based classification over the past two decades 

(Blaschke et al., 2014) addresses many of the shortcomings of 
pixel-based analyses for UAS imagery since pixels are now much smaller 
than the objects of interest. This method has increasingly been used to 
efficiently and accurately classify imagery collected via satellite (Rob
ertson and King, 2011), airplane (Laliberte et al., 2004) and UAS (Dong 
et al., 2019). This approach, also referred to as GEOBIA, divides 
remotely sensed imagery into clusters of similar pixels (called objects) in 
a process called segmentation, and then evaluates the characteristics of 
each object (Hay and Castilla, 2008). This approach can also quantify 
contextual properties, such as object shape, size, and texture, in addition 
to spectral and geographical properties, which better represents how the 
human eye and brain analyze images (Blaschke et al., 2014). Segmen
tation can be completed using several types of algorithms including 
pixel-based, edge-based, and region-based approaches, with the latter 
being further divided into region-growing, region-splitting, and 
region-merging techniques (Blaschke et al., 2004). Region-growing is 
currently the most widely applied segmentation algorithm due to its 
success in a variety of settings and data sources (Ma et al., 2017). It is 
also possible to hone the spatial scale at which segments are identified 
using scale parameterization, although this optimization step does not 
always result in higher classification accuracies (Chen et al., 2018). The 
identified segments can then be classified into categories of cover based 
on the properties of the individual segments using a variety of ap
proaches (e.g. Random Forests, Classification and Regression Trees; Li 
et al., 2016). 

These GEOBIA techniques often outperform pixel-based approaches 
in cases where the pixels are smaller than the objects of interest (e.g. 
Hussain et al., 2013). Even in cases of comparable classification accu
racies between GEOBIA and pixel-based methods (Robertson and King, 
2011), object-based classification often produces more realistic results 
by returning fewer illogical errors and avoiding the ‘salt and pepper 
effect’ of pixels of multiple incorrect classes interspersed in a small area 
(Blaschke et al., 2010). Object-based analysis of remotely sensed imag
ery is usually (>85%) completed using proprietary software (Ma et al., 
2017), which can add expenses and limit flexibility in image segmen
tation or use on projects with limited budgets. Open-source software can 
reduce cost and also increase customizability for object-based analyses; 
several open-source applications of GEOBIA exist including Orfeo 
Toolbox (e.g. Deluca et al., 2019), open python script (e.g. Clewley et al., 
2014), and Spring (e.g. Teodoro and Araujo, 2016). However, to date no 
GEOBIA methods have been designed in Program R, the open-source 
programming language most widely used in ecological data analysis 
(Lai et al., 2019). 

We used GEOBIA techniques to create a program to classify shrub 
and other vegetative cover at several large (>500 ha) desert grassland 
sites in the Chihuahuan Desert with UAS-derived imagery and open- 
source software (Program R) familiar to ecologists. These sites were 
part of a regional study to understand limiting factors for winter survival 
of grassland birds. Our objective was to create a user-friendly approach 
to input a set of training data and UAS-generated maps to measure 
shrubs on the landscape as well as create accurate land cover maps 
(>70% overall accuracy) for future use in ecological modeling of desert 
grassland landscapes. We used hierarchical, object-based classification 
techniques to successfully create maps showing the cover type, location 
of shrubs, and object heights across large desert landscapes. We also 
developed and applied a hybrid classification approach for a subset of 
these cover types using pixel-based approaches to accurately reflect 
spatial heterogeneity on the landscape. All of our developed code is 
accessible through GitHub at https://github.com/andy-bankert/GE 
OBIA-in-R. These methods and resulting layers can be used by ecolo
gists to understand vegetation composition and context landscape 
within the Chihuahuan Desert. 
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2. Methods 

2.1. Study sites 

We collected imagery and classified vegetation at four ecologically 
distinct grassland/shrubland sites in the Chihuahuan Desert (Fig. 1). The 
Chihuahuan Desert is a diverse ecoregion with elevation ranging. 

from 600 to 1800 m above sea level characterized by temperatures 
that can reach freezing or exceed >50 ◦C. Most of the region’s precipi
tation, an average of 235 mm annually, occurs during localized late- 
summer monsoons, and some precipitation occurs in the form of 
snowfall during the winter. Our sites were on private, working range
lands within Grassland Priority Conservation Areas (GPCAs). One study 
site was located in the Cuchillas de la Zarca GPCA in Durango, Mexico 
and consisted of three distinct polygons totaling 724 ha at an average 
elevation of 1800 m (hereafter the Durango site). Vegetation at this site 
was characterized by grasses in the genera Aristida, Bouteloua, Muhlen
bergia, Panicum, and Bothriochloa and shrubs within the genera Junipe
rus, Acacia, and Prosopsis. The second site was at an average elevation of 
1400 m within the Janos GPCA in the state of Chihuahua, Mexico and 
was 999 ha (hereafter the Chihuahua site). This site was characterized 
by grasses of the genera Aristida, Bouteloua, Eragrostis, Panicum, Pleur
aphis, and Bothriochloa and shrub species Ephedra trifurca and Prosopis 
glandulosa. Invasive Russian thistle (tumbleweed, Salsola spp.) was 
ubiquitous in some years, and kangaroo rat (Dipodomys spp.) mounds are 
scattered throughout the site. Our third study site was located in the 
Marfa GPCA in Texas, USA consisting of two plots totaling 720 ha at an 
average elevation of 1400 m (hereafter the Texas site). One plot was 
within a continually grazed pasture and the other was in a rotationally 
grazed pasture. This site was dominated by grasses in the genera Bou
teloua and Aristida, with shrubs in the genera Prosopsis and Yucca, 
although shrub cover was very limited at this site. Our fourth study site 
was a valley grassland located in the Valle Colombia GPCA in Coahuila, 
Mexico and consisted two plots totaling 627 ha at an average elevation 
around 1200 m (hereafter the Coahuila site). This study area was 
dominated by grasses in the genera Bouteloua, Hilaria, and Aristida, with 
and shrubs in the genera Prosopsis and Yucca, although shrub cover was 
also very limited at this site. All sites were grazed by domestic cattle (Bos 
taurus) and/or bison (Bison bison). 

3. Field data collection 

We flew a Sensefly eBee Plus (Sensefly, Cheseaux-Lausanne, 
Switzerland) fixed-wing UAS with a SenseFly S.O.D.A. 1” RGB sensor 
with an f/2.8–11, 10.6 mm, and 20 Megapixel resolution lens over our 
study sites in December 2017–March 2018 to collect aerial imagery 
representative of winter conditions at each site. We developed a flight 
plan for each site using eMotion software (Sensefly, Cheseaux-Lausanne, 
Switzerland) to fly transects ~120 m above ground level oriented 
perpendicular to the wind and capture images with a 2–3 cm resolution 
and with a 70–75% horizontal and vertical overlap as recommended by 
Pix4d to produce DSMs, DTMs, as well as orthomosaics (Pix4d version 
4.3.31, Prilly, Switzerland). Where possible we extended these flights 
beyond the study site boundaries to ensure optimal image overlap (n ≥
5) necessary for 3D-surface estimation. We flew the UAS when weather 
conditions were mostly clear (<10% cloud cover) or completely overcast 
and attempted to collect data within 3 h of solar noon to avoid large 
shadows associated with a low sun angle and partly cloudy skies. We did 
not fly when winds exceeded 46 km/h to avoid damaging the UAS. 

We also identified and recorded information for ground control 
points (GCPs) on highly visible, stationary objects (e.g. wooden posts, 
cattle guards, water tanks, large rocks) throughout our study sites 
(Appendix A) using a Trimble Geo7 GTX GPS (Trimble, Sunnyvale, 
California). Since we did not always have access to a high-accuracy GPS 
at the same time we collected the imagery and were not given permis
sion to leave large targets on working ranches, we did not use black and 
white targets commonly used to ground reference aerial imagery. We 
photographed and took detailed notes on the GPS unit location in order 
to accurately relate the location of each the GPS point to individual 
pixels in the UAS imagery. We collected between 6 and 34 GCPs at each 
study site depending on the total area of the site, number of distinct 
polygons within a site, and the availability of suitable objects. 

4. Raster creation 

We used the photogrammetry software Pix4D Mapper (Pix4d, 2017) 
to process collected imagery to produce a DSM, DTM, and orthomosaic 
map of each study site. Pix4d uses photogrammetry to create a point 
cloud of elevation data which can then be processed to create elevation 
surfaces. Previous work has reported a mean vertical deviation of 8 cm 
(SD = 8 cm) in Pix4d point clouds in grasslands (Zhang et al., 2018b), 

Fig. 1. A map of four grassland bird winter survival monitoring sites and Grassland Priority Conservation Areas in the Chihuahuan desert.  
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which falls well under the threshold we use for our prominence 
parameter (15–30 cm; see Fig. 2) and crown height cutoff (30 cm). We 
first used Pix4D to stitch together aerial photographs and generate a 
sparse point cloud using the software’s structure-from-motion algo
rithms. After initial processing, we added GCPs collected in the field to 
georeference the point cloud. The root mean square error for GCPs re
ported by Pix4d ranged from 0.2 to 1.1 m. We ran Pix4d’s ‘Reoptimize’ 
step to incorporate the ground control points into the point cloud. With 
the ground control points incorporated, we created a dense point cloud 
as an intermediary step before running Pix4d’s final step creating our 
final rasters for analysis. To optimize processing time we ran the dense 
point cloud on the ‘low’ setting which calculated approximately 40 
points/sq. m, and the Pix4D software classified the point cloud so it 
could produce the DTM by creating a contour map based on points 
classified as ground points. We maintained the spatial resolution of the 
orthomosaic and DSM at the same resolution of the drone imagery 
(~2–3 cm) and set the spatial resolution of the DTM to 25x the resolu
tion of the DSM (~75 cm) to minimize effects of areas where Pix4D 
misclassified vegetation as ground points. Since the study sites generally 
had mild sloping topography, extra detail from a DTM with a pixel size 
<75 cm was not necessary. 

5. Training data collection 

Supervised classification models require training to describe the 
characteristics of cover types to be classified within the available im
agery. Because each study site was ecologically distinct, we collected 
training data specific to each study site. At each site we first determined 
the cover types relevant for the area (Table 1). Technicians familiar with 
local study-site characteristics then digitized polygons of these cover 
types on 13–20 (depending on site area and ecology; Appendix B) 100 m 
× 100 m orthomosaic tiles within each study site that contained these 
cover types (Fig. 2). Our goal was to create 100–400 polygons for each 
cover type to incorporate a wide variety of polygons for each cover type 
without unnecessarily creating an excessive number of polygons. How
ever, in some cases we created <100 polygons for uncommon cover 
types (e.g. Opuntia) and >400 polygons for cover types with similar 
spectral characteristics to other cover types (e.g. small shrubs with 
similar spectral characteristics to grass) to increase classification 
accuracy. 

6. Automated vegetation classification 

We created a two-phase, automated process to create vegetative 
cover data layers of our study site using the resulting DTMs, DSMs, and 

orthomosaics with Program R with the general outline shown in Fig. 3. 
Both phases initially segmented the study site into objects using a 
region-growing technique and then assigned spectral and spatial fea
tures (e.g. color, hue, and elevation) to each object. The first phase used 
the features and assigned cover type for each object in the training 
dataset to build a random forest (RF) model, and the second phase used 
this RF model to assign a cover type to every object in the study site. RF 
models create a large number of unique decision trees based on object 
properties from training data, and each decision tree in the ‘forest’ 
independently determines a classification for an object and all the de
cision trees vote on the object’s final classification. The objects gets 
classified as the class that gets the most votes from the forest of decision 
trees. 

Prior to image segmentation we compiled the DSM and DTM eleva
tions and the three orthomosaic color bands (red, green, and blue; RGB) 
within 100 m × 100 m tiles into a set of stacked rasters to eventually 
create 12 data layers (Table 2). This tile-by-tile analysis allowed us to 
analyze multiple tiles in parallel to increase efficiency during process
ing. We scaled all color rasters to values between 0 and 1 to simplify 
calculating other color properties such as intensity, hue, and saturation. 
We derived an additional seven data layers for use in our classification 
effort based on these inputs. We used the DTM and DSM rasters to derive 
1) slope at each pixel, 2) relative elevation for each pixel (DSM-DTM, 
setting values to zero), and 3) a binary ‘probable shrub’ layer identifying 
pixels above and below the prominence parameter. We considered 
relative elevation to be erroneous when the elevation of the DTM was 
above the DSM, since the surface elevation cannot be below the ground 
elevation, and when the relative elevation was >100 m since we do not 
have any cases of objects with >100 m prominence at our study sites. 

Fig. 2. Examples of A) a sample training area with digitized polygons and B) a raster with object IDs after initial segmentation overlaid onto aerial imagery collected 
in desert grasslands near Janos, Chihuahua, MX. 

Table 1 
Vegetation cover types at four grassland study sites across the Chihuahuan 
Desert. Cover types listed in bold are considered shrubs.  

Durango Chihuahua Texas Coahuila 

– Amaranth – – 
Bare Ground Bare Ground Bare Ground Bare Ground 
Brickellia Ephedra - Hilaria 
Grass Grass Grass Grass 
Juniperus Dipodomys mound – Opuntia 
– Prosopis - Prosopis 
Other Shrub Other Shrub Other Shrub Other Shrub 
– Rocks – – 
Shadow Shadow Shadow Shadow 
– Pleuraphis – – 
– Salsola Salsola – 
Yucca Yucca Yucca Yucca  
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Most erroneous relative elevation points were either small negative 
values scattered throughout the study site or excessively large values at 
the edge of the imagery where the DSM and DTM were built with fewer 
images. We used the RGB color bands to derive: 4) intensity (the total 
amount of light reflected), 5) hue (the dominant color), 6) saturation 
(the pureness of the color), and 7) the Excess Green Index (ExG; 2G – R – 
B; Meyer et al., 1994). This effort created a total of 12 data layers for use 
in image classifications. 

We build in four input parameters to the segmentation and classifi
cation process to allow for flexibility in study site segmentation: 1) pixel 
resolution, 2) prominence parameter, 3) minimum object size, and 4) 
inclusion height. We used a 15 cm resolution at all study sites to process 
our large study sites in a reasonable time while still capturing multiple 
pixels on each individual shrub. We set the prominence parameter 
(Fig. 4) depending on local vegetation ecology. At sites with clearly 
defined large shrubs (Chihuahua and Durango) we used a 30 cm 
prominence parameter, and at sites where most of the vegetation was 
short (Coahuila and Texas) we used a 15 cm prominence parameter. 
These values provided the most accurate results for isolating small 

shrubs from grass and bare ground during the image segmentation 
process. The prominence parameter served only as a tool for segmenting 
objects that rose above the ground level at each study site, especially 
isolating small shrubs from similar looking patches of grass. This 
parameter did not limit which cover types existed above or below the 
chosen height. We defined the minimum object size as 0.25 m2, or the 
area of a small shrub. This allowed us to identify small shrubs but pre
vented segmentation into objects smaller than shrubs (e.g. a small hole 
or an isolated small rock). Objects below this threshold merged into the 
most similar neighboring object. We set the inclusion height to 50% of 
the prominence parameter height (Fig. 4) to include lower-lying pixels 

Fig. 3. A schematic of the automated vegetation classification program that converted UAS imagery into cover type maps.  

Table 2 
Definitions of data layers generated from UAS imagery used to classify objects into cover types.  

Variable Description 

Red Amount of red reflected on a pixel (scaled from 0 to 1) 
Green Amount of green grflectreen on a pixel (scaled from 0 to 1) 
Blue Amount of blue blflectlue on a pixel (scaled from 0 to 1) 
DSM Surface elevation of a pixel above sea level (m) 
DTM Ground elevation of a pixel above sea level (m) 
Slope Difference in ground elevations of all 8 surrounding pixels with neighboring pixels weighted higher than diagonal pixels (Horn, 1981; radians) 
Relative Elevation Difference between surface elevation and ground elevation at a pixel (m) 
Binary ‘Probable Shrub’ Is a pixel’s relative elevation above the prominence parameter? (1 = yes, 0 = no) 
Intensity Total amount of light reflected at a pixel (scaled from 0 to 1) 
Hue Dominant color of a pixel on a color wheel (0–359) 
Saturation Pureness of the color at a pixel (scaled from 0 to 1) 
Excess Green Index 2*Green - Red - Blue (Meyer et al., 1994)  

Fig. 4. A schematic of a shrub describing 1) prominence parameter (dashed 
line), and 2) inclusion height (solid line), both model parameters included in a 
classification of vegetative cover in the Chihuahuan Desert. 
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with objects containing pixels above the prominence parameter. 

7. Image segmentation and feature selection 

We first segmented images by grouping pixels into discrete objects by 
evaluating color and elevation properties. We used an iterative region- 
growing process to segment tiles. We first selected a seed pixel and 
then tested neighboring pixels for elevation and color homogeneity in a 
nested loop that grew the object. We defined the seed pixel as the pixel 
with the highest relative elevation not already assigned to an object. For 
the first nested loop iteration, the model tested all eight neighboring 
pixels, including diagonally adjacent pixels, for homogeneity by: 1) 
calculating the Euclidian distance (Equation (1)) from the three color 
bands of the seed pixel to the color bands of the test pixel, and 2) 
assessing the relationships of the seed pixel to the prominence parameter 
and the test pixel to the inclusion height parameter. To only include 
pixels with similar colors in each object, we rejected test pixels with a 
Euclidian distance of the color bands >0.085 from the seed pixel. We 
also tested the model using the Euclidian distance in the intensity-hue- 
saturation color space, but we only used the RGB color space to deter
mine homogeneity to reduce model complexity. For seed pixels above 
the prominence parameter, we rejected test pixels below the inclusion 
height parameter, and for seed pixels below the prominence parameter 
we only accepted test pixels below the prominence parameter. We 
grouped test pixels that passed both the color test and the relative 
elevation test into the object. For subsequent loops, we only evaluated 
untested adjacent, but not diagonal, neighboring pixels to avoid 
checkerboard patterned objects. Each successive loop grew the object 
until no neighboring pixels passed both homogeneity tests, thus final
izing the object. We continued creating objects until the model assigned 
each pixel on the tile to an object (Fig. 2). 

We merged objects below the minimum object size threshold into 
neighboring objects with the most similar properties. We gave priority to 
neighboring objects that had pixels with relative elevations on the same 
side of the prominence parameter, and then picked a best match for the 
object based on the smallest Euclidian distance between the averages of 
each RGB color band. We assigned features to each object created during 
the image segmentation including mean reflectance value for RGB 
bands, intensity, hue, saturation, ExG, and relative elevation. We also 
included the 95th percentile relative elevation as an estimate of object 
crown height, the percentage of pixels above the prominence parameter, 
the maximum slope, and total area. We included the maximum slope as a 
feature since many shrubs rise steeply above gentle sloping grasslands, 
giving many shrub objects a higher maximum slope than non-shrub 
objects. 

8. Random forest creation and object classification 

To create property signatures to use for object classification, we 
developed an RF model by overlaying collected training data polygons 
on segmented 100 m × 100 m tiles. We built a list of computer- 
segmented objects for each cover type by including all objects with 
≥60% overlap to the hand-drawn training data polygons. Since our 
program tended to over-segment images, each hand-drawn polygon 
often had multiple computer-segmented objects. We chose 60% as the 
cutoff value to avoid including polygons of the majority wrong class in 
the training process while still including polygons on the edge of objects. 
For cover types represented by large, continuous objects (i.e. combined 
bare ground and grass cover), we included any object overlapping the 
training data polygon that included ≥5 pixels of the cover type and 
contained more pixels in that cover type than in any other training 
polygon. We used the R package ‘randomForest’ (Liaw and Weiner, 
2002) to create a RF model with our training dataset. We set the number 
of features to test at each node (mtry) to 10 and the number of decision 
trees (ntree) to 4000. These mtry and ntree values produced the lowest 
out-of-bag error, which determines how well a RF model fits a dataset, at 

the Chihuahua study site (Appendix C). 
We also created a pixel-based RF model to further separate grass 

pixels and bare ground pixels in objects classified as either grass or bare 
ground. Since both grass and bare ground at our study sites typically 
doesn’t form well-defined objects and are often mixed together at scales 
similar to or finer than our analysis pixels (0.02 m2), we used this hybrid 
approach to classify grass and bare ground cover types. We used the 
features associated with pixels enclosed by grass and bare ground 
training polygons to create the pixel-based RF model (mtry = 2, ntree =
2000). These mtry and ntree values also produced the lowest out-of-bag 
error at the Chihuahua study site (Appendix C). 

We used the object-based RF model to classify each object in each 
study site. After classifying each object, we merged all neighboring 
objects with the same cover type into a larger object of that class. For 
example, a cluster of neighboring objects classified as Yucca were 
merged into a single object classified as Yucca. We used the pixel-based 
RF model for objects classified as grass or bare ground to reassign each 
pixel within these objects to either grass or bare ground. We calculated 
the 95th percentile relative elevation using the DSM raster within each 
shrub object and used these values to create a crown height layer. 
Finally, we created a binary shrub layer for each study site by combining 
all objects that: 1) were classified as a shrub cover type, and 2) had a 
crown height >30 cm. We chose a 30 cm crown height to match field- 
based data collection protocols used at these sites, and this value was 
independent of the prominence parameter. 

Due to the ecological complexity of the Chihuahua study site, we 
developed systematic corrections to our layers based on our knowledge 
of the area for regularly misclassified objects for this site. Specifically, a 
visual inspection of the results revealed that Pleuraphis spp. grass patches 
(a genera localized at the Chihuahua study site) were consistently mis
identified as other shrubs due to their spectral similarity to other shrubs 
at the Chihuahua site. Because most objects correctly classified as other 
shrubs had >15 cm relative elevation and almost all Pleuraphis patches 
had <15 cm relative elevations, we reclassified any other shrub object 
with a crown height <15 cm as Pleuraphis. Dark patches of grass inside 
large areas of Pleuraphis were also consistently misclassified as Prosopis 
because of their similar color and area. We therefore reclassified any 
Prosopis objects with a crown height <12 cm as grass since Prosopis 
shorter than 12 cm were almost nonexistent at the Chihuahua site. 

9. Accuracy assessment 

We calculated classification accuracy by measuring the area 
correctly classified within each derived layer when compared with 
photo-interpreted validation data. To collect validation data we digi
tized a portion of the study area using similar procedures to training data 
collection. We randomly selected 100 tiles across each study site and 
then created a 10 × 10 m square area near the center of each tile to 
digitize as validation data. Many areas within the study sites have both 
grass and bare ground within small areas (<0.25 m2) that we could not 
isolate when digitizing; in this case we used a sparse grass cover type to 
represent ground with bare ground and short, sparse grass mixed 
together during validation only. We also used an unknown cover type for 
regions where we could not identify the cover type in our validation 
tiles. 

We summed the number of pixels correctly classified within each 
validation cover-type polygon and divided by the total number of pixels 
within the polygon to calculate the overall classification accuracy. For 
areas digitized as sparse grass, we considered both grass and bare 
ground as correct classifications. We omitted pixels either digitized or 
classified as shadow because we could not determine the true cover type 
and we also omitted pixels digitized as unknown. We calculated a 
separate shrub classification accuracy by comparing the number of 
pixels correctly identified as either a shrub or a non-shrub cover type to 
the total number of pixels within the validation polygons. For the shrub 
classification accuracy, a Juniperus pixel classified as Prosopis was 
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counted as correctly identified as a shrub, and a grass pixel classified as 
bare ground was also counted as correctly identified as a non-shrub. We 
calculated the producer’s accuracy by dividing the number of pixels 
correctly classified by the number of pixels of that class identified during 
the validation process, and we calculated the user’s accuracy by dividing 
the number of correctly verified pixels by the number of pixels classified 
by the computer for a given class. These measurements calculated the 
accuracy by percentage of area correctly identified. 

We also measured the quantity and allocation disagreement based on 
Pontius and Millones (2011), an object location accuracy, and a seg
mentation factor. The allocation disagreement compares the configu
ration of reference and classified maps, and the quantity disagreement 
compares the percentage of each class between a reference and classified 
map. Since calculating quantity and allocation disagreement requires 
the same number of rows and columns in the confusion matrix, we 
combined bare ground, grass, and sparse grass into a single class since 
we created a separate category (sparse grass) for regions where we could 
not always reliably separate bare ground from grass. We measured the 
object location accuracy by calculating the percentage of verification 
polygons where the computer correctly identified at least one pixel 
within the digitized polygon. This form of assessment measures how 
well the computer located certain objects rather than how well it 
delineated them. For some cover types with <50% producer’s classifi
cation accuracy (Dipodomys mounds, Ephedra, and Salsola) at the 
Chihuahua site we created an additional 100 polygons in randomly 
selected areas to supplement verification polygons so we could more 
robustly assess how well our model located these cover types. This 
measurement calculated the accuracy by dividing the number of vali
dation polygons correctly identified by the total number of validation 
polygons for the class. Since many of the shrubs at the study sites dis
played a wide variation in spectral patterns, the image segmentation 
process tended to oversegment shrubs. We quantified this over
segmentation factor by counting the number of objects within shrub 
training polygons and dividing by the number of training polygons for 
the particular shrub class to get an average number of object segments 
per training polygon. This factor only measured the accuracy of the 
image segmentation step and not the classification step, and if multiple 
objects within a polygon were classified to the correct class this 
assessment still counted each object separately when determining the 
oversegmentation factor. 

10. Results 

Overall classification accuracies ranged from 77.2% to 88.8% and 
shrub classification accuracies from 95.7% to 99.2% across four study 
sites (Table 3). We also present the confusion matrix for all cover types 
at each study site in Tables 4–7. We present object location assessments 
for all study sites in Table 8. We correctly assigned sparse grass, or areas 
with mixed grass and bare ground, to either grass or bare ground with 
high (92.7%–99.8%) accuracy across each study site. 

At the Durango study site, we found 77.2% overall classification 
accuracy and 95.7% shrub classification accuracy (Table 4). Two of the 
five individual cover types (Juniperus and other shrub) had producer’s 
accuracies >70% and grass and Juniperus had user’s accuracies >70%. 

Bare ground had a particularly low classification accuracy (<40% for 
producer’s and user’s accuracies). Of these misclassified pixels, 67.1% 
came from a paved highway where the UAS imagery appeared darker in 
validation polygons along the highway in the northwestern part of the 
study area when compared to the same highway in the training polygons 
from the southeastern part of the study area. The model classified 63.3% 
of the misclassified bare ground pixels as grass, and it classified 90.6% of 
the incorrectly classified grass pixels as bare ground. Only two of the five 
cover types, bare ground (74.9%) and Brickellia (47.0%) had <85% 
producer’s shrub classification accuracy. Other shrub (58.4%) and 
Brickellia (32.0%) were the only classes with <85% user’s accuracy. The 
quantity disagreement was 2.6% and the allocation disagreement was 
1.9%. The model correctly located 93.6% of the other shrub, 98.6% of 
the Juniperus, and 63.8% of the Brickellia objects for the object location 
accuracy (Table 8). 

At the Chihuahua site we found 79.0% overall classification accuracy 
and 97.2% shrub classification accuracy (Table 5). The model correctly 
classified five (bare ground, grass, Prosopis, Pleuraphis, and Yucca) of the 
eight cover types encountered in the verification tiles with >70% pro
ducer’s accuracy and three cover types (bare ground, grass and Pleur
aphis) with >70% user’s accuracy. Producer’s shrub classification 
accuracy was >70% for each cover type with the exception of Ephedra 
(65%) and user’s shrub class accuracy was >70% for each cover type 
except Ephedra and Prosopis. The quantity disagreement was 2.4% and 
the allocation disagreement was 8.8%. The object location accuracy was 
>70% for most cover types, with only Salsola (69%) and Ephedra (59%) 
having <70% of verification polygons with at least some pixels 
belonging to the correct cover type (Table 8). 

At the Texas site we found 88.8% overall classification accuracy and 
99.8% shrub classification accuracy (Table 6). The model correctly 
classified grass (78.4%) and bare ground (80.2%) with >70% producer’s 
accuracy and only grass (99.1%) with >70% user’s accuracy. Two of the 
three shrub cover types (other shrub and Yucca) had between 60% and 
70% producer’s accuracy and Yucca had a 65.5% user’s accuracy while 
other shrub had 46.5% user’s accuracy. The model did not correctly 
identify any Salsola, which only represented 0.02% of validation pixels, 
during the verification process. Other than other shrub (66.9% pro
ducer’s and 59.7% user’s) and Yucca (83.6% producer’s and 72.9% 
user’s), the model correctly predicted the shrub classification accuracy 
of the remaining cover types at >90%. The quantity disagreement was 
0.1% and the allocation disagreement was 0.2%. The object location 
accuracy was 73.1% for other shrubs and 84.6% for Yucca (Table 8). 

At the Coahuila study site, we found 85.7% overall classification 
accuracy and 98.0% shrub classification accuracy (Table 7). We found 
class-level producer’s accuracies >70% for three cover types (bare 
ground, grass, and other shrub) and 65–70% class accuracies for Hilaria 
and Yucca with >70% user’s accuracies for three cover types (bare 
ground, grass, and Yucca). The shrub classification producer’s accu
racies for 5 of the cover types was >85% with only the Prosopis (53.1%) 
and Opuntia (55.6%) cover types with <85% shrub classification accu
racy. The shrub classification user’s accuracies were >80% for Hilaria, 
grass, bare ground, and Yucca with Prosopis (29.8%) and other shrub 
(59.5%) showing lower shrub classification user’s accuracies. The 
quantity disagreement was 2.7% and the allocation disagreement was 
3.8%. The object location accuracy was 90.9% for Hilaria patches, 
79.6% for Prosopis, 100% for other shrubs, and 83.3% for Yucca objects 
(Table 8). 

The results of the oversegmentation factor are shown in Table 9. The 
oversegmentation factor varied between 1.8 and 40.4 with an average 
value of 11.8 and a median value of 6.7. The program showed the 
highest number of objects in the classes with the largest training poly
gons (Juniperus at the Durango site and Prosopis at the Chihuahua site). 

11. Discussion 

Vegetative cover assessment of UAS-derived imagery can create 

Table 3 
Overall vegetation classification and shrub classification accuracies of an object- 
based RF classification model at four grassland sites across the Chihuahuan 
Desert.  

Site Overall Classification Shrub 
Classification 

Durango 77.2% 95.7% 
Chihuahua 79.0% 97.2% 
Texas 88.8% 99.8% 
Coahuila 86.9% 98.1%  
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data-rich sources of habitat information previously inaccessible to 
wildlife researchers and land managers. We estimated shrub and other 
vegetative cover at several sites in Chihuahuan Desert grasslands by 
using object-based, automated classification methods in the open-source 
Program R to convert UAS collected orthomosaic and elevation rasters 
into vegetation data layers (Fig. 5). Our efforts classified overall vege
tative cover with accuracies of 77.2%–88.8% and shrub cover with ac
curacies between 95.7% and 99.2% across our four ecologically distinct 
study sites. The methods we developed (available at https://github. 
com/andy-bankert/GEOBIA-in-R) are some of the first to use open- 
source software for object-based classification on UAS-sourced data 
using Program R, and make this type of classification technique more 
accessible to ecologists wishing to use UAS as a tool for vegetation 
assessment in ecological study. 

This work represents a significant step towards the development and 
implementation of flexible, low cost, open-source GEOBIA methods for 

UAS data over large study areas. Although some open-source software 
tools have been developed and successfully applied to multi–scale 
vegetation mapping and habitat classification (Clewley et al., 2014) as 
well as urban land use mapping (Grippa et al., 2017), the majority of 
grassland and shrubland vegetation classifications from UAS imagery 
have relied on proprietary software for image segmentation. While 
proprietary software can be more powerful, versatile, and efficient, we 
were still able to design a simple and low-cost alternative program that 
can incorporate the two most relevant parameters at our study sites 
(elevation thresholds and color similarity) into image segmentation and 
the resulting land cover classification maps. In future efforts, 
open-source flexibility could also extend to other program modifications 
including minor adjustments to threshold parameters, changing which 
features to analyze during segmentation and classification, specialized 
region-growing techniques, or significantly changing image segmenta
tion and object classification methods. 

Table 4 
Confusion matrix showing the number of pixels in verification areas at the Cuchillas de la Zarca Grassland Priority Conservation Area in Durango, MX. Bold numbers 
refer to pixels where both the model and hand verification identified the same cover type. The accuracies reported show both the percentage of pixels assigned to the 
correct cover type and the percentage of pixels where the model correctly determined whether the pixel belonged to a shrub or a non-shrub.   

Bare Ground Grass Brickellia Juniperus Other Shrub Sparse Grassa Unknownb Shadowb 

Bare Ground 3564 65963 370 192 509 39163 3287 1369 
Grass 4868 151969 938 241 891 73351 5960 2613 
Brickellia 51 2604 1034 508 139 913 722 127 
Juniperus 87 2774 115 22494 316 931 376 1132 
Other Shrub 2685 1475 9 45 8409 1869 1449 423 
Shadow 1282 5770 243 2528 1111 4863 1675 30622 
Producer Class Accuracy 31.7% 67.6% 41.9% 95.8% 81.9% 96.8% – – 
Producer Shrub Accuracyc 74.9% 97.0% 47.0% 98.2% 86.4% 96.8% – – 
User Class Accuracy 38.9% 97.0% 19.7% 84.2% 58.0% – – – 
User Shrub Accuracycc 99.0% 99.1% 32.0% 85.8% 58.4% – – – 
% Overall Correct Cover Type 77.2% – – – – – – – 
% Overall Correct Shrub Classification 95.7% – – – – – – – 
Quantity Disagreement 2.6% – – – – – – – 
Allocation Disagreement 1.9% – – – – – – –  

a Pixels in the Sparse Grass cover type were considered correct if the model predicted either Bare Ground or Grass. 
b The accuracy of Unknown and Shadow were not included in error assessment. 
c We considered Brickellia, Juniperus, Other Shrub, and Yucca as shrubs; we considered all other cover types as non-shrubs except Shadow. 

Table 5 
Confusion matrix showing the number of pixels in verified areas at the Janos Grassland Priority Conservation Area in Chihuahua, MX. Bold numbers refer to pixels 
where both the model and hand verification identified the same cover type. The accuracies reported show both the percentage of pixels assigned to the correct cover 
type and the percentage of pixels where the model correctly determined whether the pixel belonged to a shrub or a non-shrub.   

Bare 
Ground 

Ephedra Grass Dipodomys 
mound 

Prosopis Spare 
Grassa 

Pleuraphis Salsola Yucca Unknownb Shadowb 

Amaranth 0 0 254 0 0 0 0 89 0 9 0 
Bare Ground 35513 98 37984 1103 615 82539 5515 1301 4 681 313 
Ephedra 3 888 917 0 452 266 82 273 89 656 216 
Grass 6743 382 124063 329 1984 70322 10460 4833 33 2307 1037 
Dipodomys mound 885 9 570 1113 39 2440 0 66 0 68 80 
Prosopis 249 253 2772 6 10308 2309 293 1503 23 971 1120 
Rocks 3 0 0 0 85 28 0 0 0 0 12 
Pleuraphis 904 9 4518 0 7 3829 48500 5 17 402 157 
Salsola 50 137 1695 9 1045 724 7 7063 10 768 150 
Yucca 13 49 0 0 1 171 0 0 476 3 47 
Other Shrub 323 0 6 0 0 2241 55 0 9 309 4 
Shadow 148 81 255 5 503 423 119 123 19 100 1756 
Producer Class Accuracy 79.5% 48.7% 71.8% 43.5% 70.9% 92.7% 74.7% 46.7% 72.0% – – 
Producer Shrub Accuracyc 98.7% 65.2% 97.9% 99.8% 74.0% 97.0% 99.3% 88.3% 90.3% – – 
User Class Accuracy 71.7% 29.9% 88.7% 21.7% 58.2% – 83.9% 65.8% 67.0% – – 
User Shrub Accuracyc 99.6% 48.1% 98.9% 99.1% 59.7% – 99.9% 88.9% 74.1% – – 
% Overall Correct Cover Type 79.0% – – – – – – – – – – 
% Overall Correct Shrub 

Classification 
97.2% – – – – – – – – – – 

Quantity Disagreement 2.4% – – – – – – – – – – 
Allocation Disagreement 8.8% – – – – – – – – – –  

a Pixels in the Sparse Grass cover type were considered correct if the model predicted either Bare Ground or Grass. 
b The accuracy of Unknown and Shadow were not included in error assessment. 
c Ephedra, Prosopis, Salsola, Yucca, and Other Shrub counted as shrubs, and all other cover types except Shadow counted as non-shrubs. 
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While other hybrid approaches have used pixel-based results to 
inform object-based classification (Chen et al., 2017), ours is the first to 
use pixel-based methods to reclassify objects. This approach was 
uniquely suited for characterizing vegetation in this system because of 
the heterogeneous nature of grass and bare ground cover at the spatial 
scale of our pixels (0.02 m2), not our objects (>0.06 m2). Additionally, 
our use of several types of classification accuracies (i.e. overall classi
fication accuracy, quantity and allocation disagreement, and object 
location accuracy) helped give context to traditional class-level accu
racies derived from confusion matrices and is important to assess in 
desert landscapes. For example, Dipodomys mounds at the Chihuahua 
site had a 43% cover classification accuracy. However, our model suc
cessfully located most Dipodomys mounds by identifying at least some 
pixels correctly (object location accuracy) within a validation polygon 
88% of the time. Similarly, Prosopis at the Coahuila site had a 51.3% 
cover classification accuracy, but an object location accuracy of 74%. 
Calculating allocation disagreement and object location accuracy as 
additional accuracy metrics gives information about the predicted 
presence or absence of a particular vegetative characteristic (e.g., ver
tical structure), which can be just as important to assess as the amount of 
vegetative cover on a landscape. For example, the presence of a single 

high point in an area can influence habitat use by sparrows (e.g. 
Marshall et al., 2020). Loggerhead shrikes (Lanius ludovicianus), a 
common predator of grassland birds, may utilize perches within their 
home ranges as vantage points to scan for prey (Macías-Duarte et al., 
2018). The presence of a small number of shrubs in an area could 
therefore influence grassland bird populations in the area. 

The methods we outline here are particularly promising for use in 
shrub removal and grassland improvement projects common in the 
Chihuahuan Desert. Shrub encroachment is one of the main drivers of 
regional grassland loss, and shrub cover is an important determinant of 
biomass (Cunliffe et al., 2020) as well as habitat quality and use for 
grassland wildlife (e.g. Macías-Duarte et al., 2018). These methods can 
be used as a tool for researchers and managers currently struggling to 
assess shrub cover at sites within desert grasslands. The use of UAS 
technology allows users to collect imagery as frequently as necessary, 
and during times of year and hours during the day ideal for data 
collection. For example, those wanting to measure the effects of herbi
cide treatment can use a UAS to collect imagery before and after treat
ment, and classify the collected imagery to quantify this change using 
the resulting data layers easier to interpret than ground-based mea
surements (Laliberte et al., 2004). Also, ecologists can pair UAS 

Table 6 
Confusion matrix showing the number of pixels in verified areas at the Marfa Grassland Priority Conservation Area in Texas, USA. Bold numbers refer to pixels where 
both the model and hand verification identified the same cover type. The accuracies reported show both the percentage of pixels assigned to the correct cover type and 
the percentage of pixels where the model correctly determined whether the pixel belonged to a shrub or a non-shrub.   

Bare Ground Grass Salsola Other Shrub Yucca Sparse Grassa Unknownb Shadowb 

Bare Ground 9864 48675 19 29 22 83267 317 232 
Grass 2433 177132 72 207 84 142888 1489 1166 
Salsola 0 39 0 1 0 142 0 6 
Shadow 3 1679 0 96 33 1137 113 759 
Other Shrub 0 162 7 433 123 207 179 110 
Yucca 1 68 0 47 418 104 1 26 
Producer Class Accuracy 80.2% 78.4% 0.0% 60.4% 64.6% 99.8% – – 
Producer Shrub Accuracyc 100.0% 99.9% 92.9% 66.9% 83.6% 99.9% – – 
User Class Accuracy 65.6% 99.1% 0.0% 46.5% 65.5% – – – 
User Shrub Accuracyc 100.0% 99.9% 99.5% 59.7% 72.9% – – – 
% Overall Correct Cover Type 88.8% – – – – – – – 
% Overall Correct Shrub Classification 99.8% – – – – – – – 
Quantity Disagreement 0.1% – – – – – – – 
Allocation Disagreement 0.2% – – – – – – –  

a Pixels in the Sparse Grass cover type were considered correct if the model predicted either Bare Ground or Grass. 
b The accuracy of Unknown and Shadow not included in error assessment. 
c Other Shrub, Salsola, and Yucca were considered shrubs, and all other cover types except Shadow counted as non-shrubs. 

Table 7 
Confusion matrix showing the number of pixels in verified areas at the Valle Colombia Grassland Priority Conservation Area in Coahuila, MX. Bold numbers refer to 
pixels where both the model and hand verification identified the same cover type. The accuracies reported show both the percentage of pixels assigned to the correct 
cover type and the percentage of pixels where the model correctly determined whether the pixel belonged to a shrub or a non-shrub.   

Hilaria Prosopis Opuntia Other Shrub Grass Bare Ground Yucca Sparse Grassa Unknown/Shadowb 

Hilaria 3452 74 0 0 2167 170 0 5282 632 
Prosopis 31 1493 55 1 2269 26 4 1155 2013 
Opuntia 0 0 0 0 0 0 0 0 0 
Other Shrub 0 0 0 989 158 33 1195 1297 1426 
Grass 1161 1234 60 86 111137 7012 440 124589 8258 
Bare Ground 436 109 14 10 27130 18389 52 88960 3193 
Shadow 0 29 0 110 6 46 6 648 1247 
Yucca 0 0 0 38 63 16 3134 689 383 
Producer Class Accuracy 68.0% 51.3% 0.0% 88.0% 77.8% 71.7% 65.0% 96.2% – 
Producer Shrub Accuracyc 99.4% 51.3% 57.4% 91.5% 98.3% 99.7% 89.8% 98.6% – 
User Class Accuracy 31.0% 29.7% – 26.9% 95.9% 79.5% 79.5% – – 
User Shrub Accuracyc 99.3% 29.8% – 59.5% 99.3% 99.9% 80.5% – – 
% Overall Correct Cover Type 86.9% – – – – – – – – 
% Overall Correct Shrub Classification 98.1% – – – – – – – – 
Quantity Disagreement 2.7% – – – – – – – – 
Allocation Disagreement 3.8% – – – – – – – –  

a Pixels in the Sparse Grass cover type were considered correct if the model predicted either Bare Ground or Grass. 
b The accuracy of Unknown and Shadow were not included in error assessment. 
c Prosopis, Other Shrub, and Yucca counted as shrubs, and all other cover types except Shadow counted as non-shrubs. 
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generated vegetation maps with GPS transmitter data to better under
stand how certain species interact with their habitat. 

Future work in this area includes the improvement of our approach 
to map vegetation both in desert grasslands and other ecotypes. There 
are several opportunities for improved efficiency and accuracy in our 
classification methods, particularly in the image segmentation process. 
Eight of the total 26 cover types from the validation data had class- 
specific accuracies ≤60%, including Brickellia, Opuntia, Salsola, and 
Ephedra. This likely occurred because of the similarity of RGB spectral 
signatures between grass and these cover types (e.g. Brickellia, Ephedra, 
other shrubs at the Coahuila site, low growing sparse Prosopis at the 

Texas site, and Salsola; Appendix D), small training sample for uncom
mon cover types (i.e. Salsola in Texas [n = 11], Opuntia in Coahuila [n =
31]), and misclassification of a highway as bare ground at the Durango 
site, which appeared darker in the verification region than in the 
training region. Future efforts should prioritize training polygon 
collection for uncommon cover types that are ecologically important, 
spectrally similar cover types, or cover types with a very diverse 
signature to increase class-level accuracies. Collecting additional color 
bands, such as near infrared, and collecting imagery during the summer 
or fall before most shrubs have lost their leaves could help improve 
accuracy of classes with a similar spectral pattern to grass. Both of these 
methods require additional costs of either extra field time or extra flights 
and may not always be worth the benefit. Further, it is possible to 
improve upon the image segmentation work by incorporating different 
variables including intensity-hue-saturation and/or multispectral prop
erties, as well as more complex algorithms such as edge detection, k- 
means clustering, and/or neural networks. Including additional features 
such as object texture, shape, and size could be useful for improving 
classification with improved image segmentation that correctly and 
completely delineates most objects. Our process only relied on one color 
threshold and two elevation thresholds to grow objects, and incorpo
rating a variable threshold for color may have allowed the program to 
completely segment shrubs rather than oversegment them. Finally, as 
machine learning techniques advance, updated classification methods 
could be also employed to build upon the RF methods in our study. 

12. Conclusions 

UAS technology is a promising new tool for measuring vegetative 
cover across landscapes. We successfully used UAS collected imagery to 
create data layers of shrubs and other vegetative cover in grasslands of 

Table 8 
The number of objects from discrete cover types identified during verification at 
four Chihuahuan Desert study sites and the number of these objects where the 
model correctly located the object by identifying at least some of the object’s 
pixels correctly. At the Chihuahua site, we identified objects during verification 
as well as randomly elsewhere across the study site for some cover types with 
few objects identified during verification and at all other sites we only used 
polygons digitized during verification.    

# of Objects Identified Object 
Location 

Site Class Hand 
Digitized 

Computer Accuracy 

Durango Other Shrub 47 44 93.6% 
Durango Juniperus 71 70 98.6% 
Durango Brickellia 80 51 63.8% 
Chihuahua Dipodomys 

mounda 
110 97 88.2% 

Chihuahua Prosopis 76 72 94.7% 
Chihuahua Yucca 23 20 87.0% 
Chihuahua Salsolaa 174 120 69.0% 
Chihuahua Ephedraa 161 95 59.0% 
Chihuahua Pleuraphis 95 67 70.5% 
Texas Other Shrub 26 19 73.1% 
Texas Salsola 2 0 0.0% 
Texas Yucca 26 22 84.6% 
Coahuila Hilaria 16 15 93.8% 
Coahuila Prosopis 77 57 74.0% 
Coahuila Opuntia 4 0 0.0% 
Coahuila Other Shrub 11 11 100.0% 
Coahuila Yucca 104 83 79.8%  

a We identified Dipodomys, Salsola, and Ephedra objects outside of the verifi
cation tiles at the Chihuahua site to increase the number of verification objects. 

Table 9 
Oversegmentation factors of shrub classes at four study sites across the Chi
huahuan Desert.  

Site Class # 
Polygons 

Average 
polygon area 
(m2) 

Oversegmentation factor 
(# objects per polygon) 

Durango Brickellia 423 1.41 6.7 
Durango Juniperus 378 16.51 28.2 
Durango Other 

Shrub 
307 6.86 16.5 

Durango Yucca 38 1.01 6.0 
Chihuahua Ephedra 242 0.95 5.9 
Chihuahua Prosopis 127 13.00 40.4 
Chihuahua Other 

Shrub 
150 0.97 4.2 

Chihuahua Salsola 213 2.30 10.4 
Chihuahua Yucca 188 0.93 5.6 
Texas Salsola 11 6.15 4.3 
Texas Other 

Shrub 
191 1.52 3.7 

Texas Yucca 241 0.48 1.8 
Coahuila Prosopis 978 1.25 6.9 
Coahuila Other 

Shrub 
189 3.58 19.4 

Coahuila Yucca 316 1.51 11.7  

Fig. 5. An example of rasters showing A) Red Green Blue orthomosaic, B) 
vegetation cover classification, C) shrub presence/absence, and D) shrub height 
produced using UAS data layers and supervised random forest classification in 
desert grasslands. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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the Chihuahuan Desert and generated high-accuracy vegetation layers 
for our study sites to understand habitat use in deserts grassland species 
wintering in these areas. Our methods can be used in other sites in desert 
grasslands to measure shrub cover at time intervals and spatial extent 
specific to a study and have particular potential for use in shrub removal 
studies to directly measure change in shrub cover before and after 
treatment. Our work is some of the first to use the open-source software 
Program R to build land cover datasets from UAS-generated orthomosaic 
and elevation rasters using object-based methods. Given the flexible 
nature of these methods, our approaches can also be modified for use 
outside of grasslands in other systems and settings. Ideally our work can 
serve as a foundation upon which future researchers can build to 
customize the classification process to answer questions ecologically 
relevant to a broad range of habitats. 
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Equation (1). Formula for Euclidian distance (dEuclid) using the Red, 
Green, and Blue values for both seed and test pixels. 

dEuclid=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
(Redseed − Redtest)

2
+(Greenseed − Greentest)

2
+(Blueseed − Bluetest)

2)
√

(1)   
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Bredee for Rancho Santa Teresa and Rancho El Regalo (the Durango site) 
respectively. We also thank PML Serrano for help in initial UAS flight 
planning, A Shaw for support in UAS image processing, and TB Ryder for 
review of an earlier version of the manuscript that greatly improved its 
content. The views and opinions expressed here are those of the authors 
and do not necessarily reflect the position of our funders. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jaridenv.2020.104383. 

References 

Anadón, J.D., Sala, O.E., Turner, B.L., Bennett, E.M., 2014. Effect of woody-plant 
encroachment on livestock production in North and South America. Proc. Natl. Acad. 
Sci. Unit. States Am. 111, 12948–12953. https://doi.org/10.1073/ 
pnas.1320585111. 

Anderson, K., Gaston, K.J., 2013. Lightweight unmanned aerial vehicles will 
revolutionize spatial ecology. Front. Ecol. Environ. 11, 138–146. https://doi.org/ 
10.1890/120150. 
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