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Abstract

Across taxa, sex-specific demands vary temporally in accordance with reproductive invest-

ments. In solitary carnivores, females must provision and protect young independently while

meeting increased energetic demands. Males seek to monopolize access to females by

maintaining large territories and defending them from other males. For many species, it is

poorly understood how these demands relate to broad-scale animal movements. To investi-

gate predictions surrounding the reproductive strategies of solitary carnivores and effects of

local conditions on bobcat (Lynx rufus) spatial ecology, we examined the effects of sex and

reproductive season on home range size, movement rate, and resource selection of bobcats

in the central Appalachian Mountains. Male seasonal home ranges were approximately 3

times larger than those of females (33.9 ± 2.6 vs. 12.1 ± 2.4 km2, x±SE), and male move-

ment rates were 1.4 times greater than females (212.6 ± 3.6 vs. 155 ± 8.2 m/hr), likely

reflecting male efforts to maximize access to females. Both sexes appear to maintain rela-

tively stable seasonal home ranges despite temporally varying reproductive investments,

instead adjusting movements within home ranges. Males increased movements during the

dispersal period, potentially reflecting increased territoriality prior to breeding. Females

increased movements during the kitten-rearing period, when foraging more intensively, and

frequently returning to den sites. Both sexes selected home ranges at higher elevations.

However, females selected deciduous forest and avoided fields, whereas males selected

fields and avoided deciduous forest, perhaps explained by male pressure to access multiple

females across several mountain ridges and higher risk tolerance. Seasonal changes in

home range selection likely reflect changes in home range shape. Increased female avoid-

ance of fields during kitten rearing may indicate female avoidance of presumably resource

rich, yet risky, fields at the time when kittens are most vulnerable. Our results indicate that

while reproductive chronology influences the spatial ecology of solitary carnivores, effects

may be constrained by territoriality.
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Introduction

An animal’s use of a landscape represents a series of life history tradeoffs, in which energy

expenditure and mortality risk reduce fitness, and energy acquisition and reproductive success

increase fitness [1]. Temporal variations in these tradeoffs correspond to varying demands

required for reproductive success through time. For solitary carnivores, life history tradeoffs

also vary widely between sexes due to differing reproductive investments [2]. Males must max-

imize access to females, and females must protect and provision young independently [2].

Both sexes must acquire sufficient energy to successfully execute these reproductive strategies.

The implied costs of energy acquisition for carnivores are high, due to the need to hunt and

kill prey [3,4]. The costs for females are highest during pregnancy and lactation, as these pro-

cesses are energetically expensive [5]. Males sustain the highest costs during the breeding

season when they must locate and breed females while defending territories against male com-

petitors, in addition to foraging [2]. Considering these factors, the spatial ecology of male soli-

tary carnivores is expected to be driven by the distribution of females and energy acquisition

needs, whereas energy acquisition and protection of young should be the primary drivers of

female spatial ecology. In the presence of a distinct breeding season, male spatial ecology

should shift at that time to exploit the focal resource of receptive females. However, competi-

tion over females may continue year-round for territorial species, since the cost of maintaining

an exclusive area could be lower than establishing one every breeding season [2]. Understand-

ing how the reproductive chronology of solitary carnivores influences their spatial ecology can

provide insight into fundamental ecological processes, since space use and resource selection

can influence processes such as population dynamics, behavioral interactions, and foraging

behavior [6–8].

Bobcats (Lynx rufus) are a solitary, midsized felid with a territorial social organization and

polygynous breeding strategy [9]. Male bobcats exhibit larger home ranges than those of

females [10], and may exhibit greater movement rates than females [11–14]. As obligate carni-

vores, bobcats require sufficient prey to meet energetic demands. Bobcats are known to select

areas of dense vegetation that likely have higher prey availability [15–19]. Prey availability is

considered the primary driver of regional variation in bobcat home range size; specifically, as

prey availability increases, individuals can meet energetic demands in smaller areas [10,13,15].

Bobcat space use may vary seasonally, with seasonal variation being more common in

northern latitudes with greater winter severity [19–22]. When home range sizes vary season-

ally, they are typically smaller during summer months when prey is more available and females

remain closer to den sites, and larger during winter months when prey may be less available

and males seek to maximize breeding opportunities [14,19,22]. Although females may have

smaller home ranges during the kitten-rearing season, their activity and movement rates often

increase during this time, indicating more intensive use of home ranges [23–25]. Both sexes

may increase movement rates during winter months, which has been attributed to breeding

behavior and decreased prey availability [26,27]. Resource selection patterns often shift season-

ally as a result of changes in the distribution and abundance of prey [11,17,19,22].

Bobcat populations are increasing or stable throughout much of their range [28]. These

trends are evident in the central Appalachian Mountains [28]. Although bobcats largely per-

sisted, wolves (Canis spp.) and cougars (Puma concolor) remain extirpated from ecosystems in

the Appalachian Mountains, leaving bobcats as an apex predator in the region, along with

black bears (Ursus americanus) and coyotes (Canis latrans) [29]. Within this guild, bobcats are

the only obligate carnivore, can occur at population densities approximately twice those of

coyotes [30,31], and have the broadest dietary niche of prey items [29]. Thus, bobcats hold

potential to influence processes relating to both prey and competitors, and understanding the
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spatial ecology of bobcats may be important to predicting spatial variation in food web dynam-

ics in these systems. In addition to their ecological importance, bobcats have economic and

socio-cultural value as a furbearer and game species in the central Appalachian Mountains and

are generally valued by the public [32]. Despite their importance, there is a paucity of informa-

tion on bobcat spatial ecology throughout the central Appalachian Mountains.

We examined the sex- and season-specific aspects of bobcat spatial ecology in western Vir-

ginia to gain insight into the life history tradeoffs of solitary carnivores, how these tradeoffs

may vary from other regions, and what conditions drive those variations. We estimated home

ranges to quantify the space required to acquire resources, calculated movement rates to exam-

ine the intensity of home range use, and conducted resource selection analyses to determine

the drivers of home range selection (i.e. 2nd order resource selection [8]). Males should seek to

monopolize access to multiple females, thus we expected male home ranges to be larger than

those of females, male movement rates to be greater than those of females, and both metrics to

increase during the breeding season. Since females face increased energetic demands during

kitten rearing, but also must balance provisioning and protecting young, we expected female

home range size to decrease and movement rates to increase during kitten rearing. Female

home range selection should be driven by prey and protection of young, whereas male home

range selection should be driven by access to females and prey, therefore resource selection

patterns should differ between sexes. Seasonal resource selection should be driven by shifting

prey use and availability for both sexes, but may also be influenced by female protection of

young and male breeding behavior.

Materials and methods

Study area

Our study area encompasses the western half of Bath County, Virginia, adjacent to the border

with West Virginia (Fig 1). Bath County is in the Valley and Ridge physiographic province of

the Appalachian Mountain range, characterized by parallel, northeast-southwest oriented

ridges with narrow valleys interspersed. The repetitive topographical pattern results in largely

predictable land cover, with public, forested land on the steep ridges and slopes, and narrow

strips of private, low-intensity development and agriculture in the flatter valley bottoms. Bath

County is 90% forested land cover, most of which is managed by the US Forest Service and

Virginia Department of Game and Inland Fisheries. Elevation ranges from 343 meters to 1363

meters. Average monthly temperature can range from -1 to 22 ˚C, with a mean daily minimum

temperature of -7 ˚C in January and a mean maximum temperature of 28 ˚C in July [33].

Average annual precipitation is 110 cm [33]. Forest structure primarily consists of mature

deciduous forest, with common overstory species including oak (Quercus spp.), hickory

(Carya spp.), maple (Acer spp.), and tulip poplar (Liriodendron tulipifera). Conifers are present

in some forest stands, with common species including pine (Pinus spp.) and hemlock (Tsuga
spp.). Other than bobcats, the large carnivore guild includes coyotes and black bears. Common

bobcat diet items are squirrels (Sciurus spp.), voles (Microtus spp.,Myodes gapperi), mice (Per-
omyscus spp.), cottontail rabbits (Sylvilagus spp.), and white-tailed deer (Odocoileus virginia-
nus) [29].

Bobcat capture and monitoring

We captured bobcats using cage traps (Camtrip Cages, Bartsow, California, USA and Briar-

patch Cages, Rigby, Idaho, USA) in accordance with Virginia Tech IACUC protocol #16–071.

Capture was conducted during 2017 and 2018, primarily during late winter and spring, with a

small number of captures during autumn. We checked traps twice daily (early morning and
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evening). We immobilized bobcats with a mixture of 10–15 mg/kg ketamine hydrochloride

and 1mg/kg xylazine using hand injection with a syringe. We monitored and recorded respira-

tory rates, heart rates, and temperatures every 5–10 minutes. We used tooth growth and condi-

tion, body morphology, and teat/scrotum characteristics to determine whether bobcats were

juvenile or adult [34]. We fitted adult bobcats with Iridium GPS collars (Telonics, Mesa, Ari-

zona, USA and Advanced Telemetry Systems, Isanti, Minnesota, USA). All bobcats captured

were marked with color-coded numbered ear tags. Following handling, we reversed xylazine

with 0.125 mg/kg yohimbine, administered either rectally or intramuscularly, and allowed

bobcats to recover in the cage trap for 30 minutes to 1 hour before release. We programmed

GPS collars to collect locations at 1, 2, and 4-hour intervals, however finer-scale sampling was

related to other research objectives. For these analyses we used standardized 4-hour intervals.

Reproductive season classification

We classified 3 seasons of interest (breeding, kitten-rearing, and dispersal) based on the repro-

ductive chronology and life history of bobcats. We classified January 1—March 31 as the

breeding season, to overlap with the estrus cycle of females. Bobcats are spontaneous ovulators,

Fig 1. Map of study area with land cover and 95% home ranges of bobcats (n = 20) monitored from 2017–2019 in Bath County, VA. Home ranges

were calculated using the autocorrelated kernel density estimator.

https://doi.org/10.1371/journal.pone.0225355.g001
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with the peak of estrous occurring in February and March [35]. To maximize reproductive

success, males must breed as many females as possible during this window. Once pregnant,

energetic demands will begin to increase for females [5]. We classified kitten-rearing season as

April 1—September 30, since the 60–70 day gestation period results in parturition during

April and May. Kittens will feed exclusively on milk for approximately their first 2 months,

then they will nurse daily and consume small prey delivered by the mother for an additional 2

months, learning to hunt in the later phases of this period [36]. It is evident that kittens rely

heavily on their mother during this approximately 4-month period, and that kitten-bearing

females are under significant pressure to acquire abundant prey. We classified the dispersal

season as October 1—December 31. Similar to the approach of Chamberlain et al. [11], we

examined this third season (what they termed “winter”) in addition to breeding and kitten-

rearing. Presumably, resident females seek to restore body mass depleted during the kitten-

rearing period, and resident males will aim to maximize body mass in preparation for the

breeding season. Although dates of dispersal initiation can vary widely [37–40], pressure for

dispersers to establish home ranges should be highest prior to the breeding season, since natal

dispersal is defined by movements to reproductive sites [41]. Thus, the months of October

through December represent a distinct period of bobcat behavior.

Home range analysis

We estimated bobcat home ranges using the autocorrelated kernel density estimator (AKDE)

[42] using the continuous-time movement modeling package (ctmm) [43] in program R ver-

sion 3.5.3 [44]. The AKDE is a third-generation estimator that assumes the data represent a

sample from a nonstationary, autocorrelated continuous movement process by incorporating

the movement of animals through an autocorrelation function derived from movement mod-

els fit to the data [42]. Furthermore, AKDE reduces to a conventional kernel density estimator

when locations are truly independent, and can correct for missing locations and irregular sam-

pling schedules through an optimal weighting method [45]. We estimated 95% annual home

ranges for bobcats with at least 4 months of relocation data, during at least 2 seasons. We esti-

mated 95% seasonal home ranges for bobcats with locations collected for at least 1 month in a

given season. The autocorrelation structure of the data indicates that approximately 2 weeks of

movement data is sufficient to estimate bobcat home ranges, supporting these thresholds (S1

Fig in S1 Appendix). We fit linear mixed effects models for each season using restricted maxi-

mum likelihood, with area of 95% seasonal home range as the response variables. We used a

natural logarithm transformation for home range sizes to meet assumptions of normality. We

included both the interaction and main effects of sex and season as predictors, and treated ani-

mal-specific intercepts as random effects. We fit models in the program R [44] package lme4

[46] and assessed the significance of factors and degrees of freedom using Satterthwaite’s

method for approximating degrees of freedom in the program R [44] package lmerTest [47].

Movement analysis

We estimated each bobcat’s movement rates in meters moved per hour, calculated as the

straight-line step length between successive locations divided by the time lag. Only steps with a

4-hour time lag were included. We calculated annual movement rates to facilitate comparisons

to other studies and we calculated seasonal movement rates to examine seasonal effects. We

calculated annual movement rates for bobcats with at least 4 months of relocation data during

at least 2 seasons. Seasonal movement rates were only examined for bobcats that were moni-

tored for at least one month in a given season. We assigned each step to the appropriate season.

We used a generalized linear mixed effects model (GLMM) in the program R [44] package
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lme4 [47], with a gamma distribution and log link to model movement rates as a function of

the direct and interactive effects of sex and season. We treated animal-specific intercepts as

random effects. Significance of covariates was determined using Wald Z-test.

Resource selection analysis

We examined seasonal bobcat selection of home ranges within the landscape (2nd order [8]) by

creating resource selection functions (RSF) in a use-availability framework [48]. We character-

ized resource availability by simulating random circular polygons, following Katnik and Wiel-

gus’ [49] assertion that randomly located, simulated home ranges estimate availability more

accurately than landscape proportions. To define availability for each bobcat in each season

we simulated 10 polygons equivalent in size to each animal’s seasonal home range. We con-

strained the available polygon centers within a 5.3 km distance from each seasonal home range

center (Fig 2). We based the constraining distance of 5.3 km on the radius of the largest home

range (88.5 km2) of 2 dispersing bobcats that we collared. We classified the 2 male bobcats as

dispersers due to prolonged erratic movements that resulted in home ranges more than twice

as large as the male average. This area should reflect available habitat more accurately than

using the entire study area, as we did not randomly or systematically sample the study area due

to trapping access. Our approach is not susceptible to bias associated with the distribution of

our trapping effort, since availability is individual specific (i.e. available home ranges were con-

strained to be proximate to a given animal’s observed seasonal home range) and the proximity

constraint was based on a case study of two bobcats dispersing (i.e., selecting a home range) in

our study area. The time between dispersal initiation and settlement is a crucial aspect of home

range selection [50]. Following the simulation of polygons, we systematically extracted covari-

ate values from every 10th raster cell within both simulated and real seasonal home ranges. In

our study area, there are no systematic landscape patterns (e.g. road grids) at this scale, and

when a sample of all cells is compared to a systematic sample of every tenth cell the values of a

given landscape attribute are nearly identical [S1 Table in S1 Appendix].

Resource selection data. We included land cover and topographical based covariates in

the resource selection functions. Land cover covariates included were distance to deciduous

forest, distance to mixed forest, and distance to fields, which we derived from the 30 m resolu-

tion 2011 National Land Cover Database (NLCD). These cover types compose the vast major-

ity of the study area. Previous research in the eastern United States suggests that bobcats select

for forest habitat [11,12,51,52]. We decided to delineate between mixed and deciduous forest

because evergreen vegetation can be a primary source of concealment cover when deciduous

woody vegetation and herbaceous groundcover is limited during the dormant season. Areas

without forest cover typically consist of fields, which are mostly cattle pastures and hay fields.

The type of dense vegetation that bobcats often select for is rare within these open fields, but

field edges may provide dense vegetation. Row crops were effectively absent from the study

area. We did not include development since development only composes approximately 1% of

the study area and is mostly clustered in small, localized areas. The deciduous forest covariate

consisted of the Deciduous Forest class in the NLCD. To create a mixed forest covariate, we

combined the Evergreen Forest and Mixed Forest NLCD classes. To create the field covariate,

we combined the Pasture/Hay and Cultivated Crops NLCD classes. Lastly, we created distance

raster layers by calculating Euclidean distance to each land cover type using the Euclidean Dis-

tance tool in ArcGIS 10.6 (ESRI, Redlands, CA, USA). We used distance-based land cover

covariates because they remove the need to base inference on reference categories, reduce the

influence of telemetry error, and because effects of land cover types can extend beyond their

boundaries (e.g. edge effects surrounding fields) [53]. Topographical covariates included
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Fig 2. Example of method used to estimate use and availability for 2nd order resource selection functions. Polygons were

randomly simulated within a constrained area (5.3km) surrounding seasonal home ranges. Constraining distance was based on

observed space use of 2 dispersing bobcats. Covariates were sampled within actual home ranges and within simulated polygons and

compared. Base layer consists of a 30 m DEM to show elevation as an example covariate.

https://doi.org/10.1371/journal.pone.0225355.g002
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elevation and slope at a 30 m resolution [54]. Private lands were almost exclusively at lower

elevations and public lands at higher elevations, thus elevation can also offer insight into the

influence of land use in the consistent land cover pattern of the Valley and Ridge province.

Slope provides insight into the influence of mountainous terrain on bobcat resource selection,

due to implicit costs of movement on steeper slopes. Steep slopes also can influence movement

by providing concealment and limiting accessibility to humans and other predators. We

extracted elevation values from a digital elevation model at a 30 m resolution (DEM, United

States Geological Survey 2013). We calculated slope using the DEM with the Slope tool in Arc-

GIS 10.6 (ESRI, Redlands, CA, USA), which resulted in a 30 m resolution.

Resource selection model development. To examine 2nd order bobcat resource selection,

we developed RSFs using binomial generalized linear mixed models (GLMM) in Program R

[44] package lme4 [46]. The binary response variable for resource selection was whether a ras-

ter cell was extracted from an observed seasonal home range (used = 1) or a simulated polygon

(available = 0). Predictor variables were distance to deciduous forest, distance to mixed forest,

distance to fields, elevation, and slope. No covariates were highly correlated (all r< |0.5|; Pear-

son’s correlation). We created separate models for male and female bobcats, each consisting of

the 5 main effects, and tested if reproductive season influenced selection by including season

as a main effect and interaction term.

We rescaled all covariates by mean-centering at zero then dividing them by their standard

deviation to facilitate model convergence. We included animal-specific random intercepts to

account for variation in sampling duration among individuals [55]. We evaluated selection or

avoidance based on whether a coefficient significantly differed from zero (α = 0.05). We deter-

mined significance of covariates using Wald Z-test. We inferred selection if used points were

closer to habitat variables than expected, and avoidance if used points were further from habi-

tat variables than expected. We compared coefficient estimates within models, from largest to

smallest, to evaluate relative importance of the various covariates.

Results

We deployed GPS collars on 20 bobcats (14 male, 6 female) from January 2017 through April

2018. Number of locations per bobcat ranged from 259 to 1979, with a mean of 933. Length of

collar deployments ranged from 55–393 days, with a mean deployment length of 259 days.

We estimated home ranges for 16 resident bobcats (11 males, 5 females) and 2 dispersing

males, excluding 2 bobcats (1 male, 1 female) that were monitored for less than 4 months and

only during 1 season. We estimated 41 seasonal home ranges, including 13 bobcats in the

breeding season (8 males, 5 females), 15 bobcats in the kitten-rearing season (11 males, 4

females), and 13 bobcats in the dispersal season (9 males, 4 females). The minimum number of

locations used to calculate a seasonal home range was 129. On average, resident male home

ranges were 33.9 ± 2.6 km2 (x ± SE) and were approximately 3 times larger than resident

female home ranges (12.1 ± 2.4 km2, Fig 3). The home ranges of the 2 dispersing males were

84.8 and 88.5 km2 and both individuals exhibited prolonged, erratic movements on the land-

scape. Male home ranges were larger than female home ranges during all seasons and there

was no significant effect of season on home range size, although male home ranges were

slightly larger during the breeding season (Table 1, Fig 3).

We estimated annual movement rates for 18 bobcats (13 males, 5 females), and seasonal

movement rates for bobcats with at least 1 month of relocations within a given season. Mean

male movement rates (212.6 ± 3.6 meters/hour) were approximately 1.4 times greater than

mean female movement rates (155.4 ± 8.2 meters/hour). Male movement rates were higher

than female movement rates during all seasons, and female movement rates were significantly
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higher during the kitten-rearing season while male movement rates were significantly higher

during the dispersal season (Table 2, Fig 4).

We examined selection of seasonal home ranges for all resident bobcats (12 males, 6

females), which excluded 2 dispersing males. For females, distance to deciduous forest, dis-

tance to fields, and elevation were the strongest predictors of home range selection (Table 3,

Fig 5. During all seasons, females selected home ranges that were at higher elevations, closer to

deciduous forest, and farther from fields than expected (Table 3, Fig 5). Females exhibited

strongest selection for deciduous forest during the kitten-rearing season (Table 3, Fig 5).

Females exhibited strongest avoidance of fields during the kitten-rearing season, weaker

Fig 3. Means and 95% confidence intervals of 95% home ranges of female and male resident bobcats monitored during 2017–2019 in Bath County,

VA, for breeding (n = 12, 4 females, 8 males), kitten-rearing (n = 16, 5 females, 11 males), and dispersal/pre-breeding (n = 15, 4 females, 11 males)

seasons, and annual (n = 16, 5 females, 11 males). Home ranges calculated using the autocorrelated kernel density estimator.

https://doi.org/10.1371/journal.pone.0225355.g003

Table 1. Linear mixed model for bobcats monitored during 2017–2019 in Bath County, VA with log transformed home range area as response and reproductive

season interacting with sex as predictors. Reference categories are sex = female and season = dispersal.

Covariate Β SE df t value Pr(>|t|)

Intercept 2.370 0.202 26.95 11.755 < 0.001

Breeding Season 0.020 0.177 21.62 0.111 0.913

Kitten-rearing season -0.020 0.190 24.51 -0.103 0.918

Male 1.098 0.236 26.69 4.658 < 0.001

Breeding season x male 0.231 0.215 22.04 1.073 0.295

Kitten-rearing season x male 0.064 0.217 23.99 0.295 0.770

https://doi.org/10.1371/journal.pone.0225355.t001
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avoidance of fields during the dispersal season, and weakest avoidance of fields during the

breeding season (Table 3, Fig 5). Females exhibited strongest selection for higher elevations

during the breeding season, less strong selection for high elevations during the dispersal sea-

son, and weakest selection for high elevations during the kitten-rearing season (Table 3, Fig 5).

Females exhibited strongest selection for mixed forest during the dispersal and breeding sea-

sons, but did not select or avoid mixed forest during the kitten-rearing season (Table 3).

Females exhibited selection for steeper slopes during the dispersal season, but exhibited selec-

tion for gentler slopes during the breeding and kitten-rearing seasons (Table 3).

Table 2. Gamma generalized linear mixed-effects model for bobcats monitored during 2017–2019 in Bath

County, VA, with movement rates as response and reproductive season interacting with sex as predictors. Refer-

ence categories are sex = female and season = kitten-rearing.

Covariate β SE t value Pr(>|z|)

Intercept 5.127 0.099 51.867 < 0.001

Breeding season -0.150 0.072 -2.093 0.036

Dispersal season -0.149 0.057 -2.605 0.009

Male 0.294 0.116 2.535 0.011

Breeding season x male 0.082 0.078 1.060 0.289

Dispersal season x male 0.189 0.064 2.968 0.003

https://doi.org/10.1371/journal.pone.0225355.t002

Fig 4. Means and 95% confidence intervals for movement rates of female and male bobcats monitored during 2017–2019 in Bath County, VA, for

breeding (n = 14, 5 females, 9 males), kitten-rearing (n = 17, 4 females, 13 males), and dispersal/pre-breeding (n = 15, 4 females, 11 males) seasons.

Movement rate is reported as meters moved per hour (m/h).

https://doi.org/10.1371/journal.pone.0225355.g004
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For males, distance to fields and elevation were the strongest predictors of home range

selection (Table 3, Fig 5). During all seasons, males selected home ranges that were closer to

fields and at higher elevations than expected (Table 3, Fig 5). Males exhibited strongest selec-

tion for fields during the kitten-rearing season and weakest selection for fields during the

breeding season (Table 3, Fig 5). Males exhibited weakest selection for high elevations during

the breeding season compared to dispersal and kitten-rearing seasons (Table 3, Fig 5). Males

exhibited selection for mixed forest during all seasons, but this selection was weakest during

Table 3. Model results for 2nd order resource selection functions (RSF) for 18 bobcats (12 male, 6 female) collared in Bath County, Virginia in years 2017–2019,

including separate models for males and females. RSF models are binomial generalized linear mixed-effects models. Results include β coefficients (β), and standard

errors (SE), z values, and p values from Wald tests. Reference category is season = dispersal.

Sex Covariate β SE Z value P value

Intercept -2.346 0.072 -32.546 < 0.001

Female Deciduous -0.244 0.027 -8.998 < 0.001

Mixed -0.124 0.015 -8.553 < 0.001

Field 0.166 0.014 11.900 < 0.001

Elevation 0.381 0.016 24.386 < 0.001

Slope 0.044 0.016 2.796 0.005

Breed 0.023 0.022 1.027 0.304

Deciduous x breed -0.006 0.037 -0.154 0.878

Mixed x breed 0.052 0.020 2.674 0.008

Field x breed -0.105 0.020 -5.162 < 0.001

Elevation x breed 0.086 0.021 4.086 < 0.001

Slope x breed -0.053 0.023 -2.341 0.019

Kitten -0.071 0.026 -2.764 0.006

Deciduous x kitten -0.126 0.043 -2.943 0.003

Mixed x kitten 0.137 0.024 5.679 < 0.001

Field x kitten 0.124 0.021 5.781 < 0.001

Elevation x kitten -0.045 0.022 -2.064 0.039

Slope x kitten -0.116 0.023 -5.043 < 0.001

Intercept -2.325 0.037 -62.647 < 0.001

Male Deciduous -0.054 0.008 -6.928 < 0.001

Mixed -0.065 0.007 -9.933 < 0.001

Field -0.293 0.008 -38.014 < 0.001

Elevation 0.234 0.006 36.515 < 0.001

Slope -0.003 0.007 -0.490 0.624

Breed 0.014 0.009 1.529 0.126

Deciduous x breed 0.076 0.010 7.864 < 0.001

Mixed x breed 0.002 0.009 0.268 0.789

Field x breed 0.229 0.010 23.579 < 0.001

Elevation x breed -0.128 0.009 -14.721 < 0.001

Slope x breed 0.010 0.009 1.108 0.268

Kitten -0.011 0.009 -1.285 0.199

Deciduous x kitten 0.107 0.009 11.349 < 0.001

Mixed x kitten 0.025 0.009 2.878 0.004

Field x kitten -0.075 0.010 -7.492 < 0.001

Elevation x kitten 0.048 0.008 5.767 < 0.001

Slope x kitten -0.011 0.009 -1.196 0.232

https://doi.org/10.1371/journal.pone.0225355.t003
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the kitten-rearing season, following a similar pattern as females (Table 3). Males exhibited

selection for deciduous forest during the dispersal season, but avoided deciduous forest during

breeding and kitten-rearing seasons (Table 3, Fig 5). Slope was not a significant predictor of

male home range selection (Table 3).

Fig 5. Relative probability of 2nd order selection with 95% confidence intervals for female bobcats monitored during 2017–2019 in Bath County, VA,

for breeding (5 females, 9 males), kitten-rearing (4 females, 13 males), and dispersal/pre-breeding (4 females, 11 males) seasons. The three strongest

covariates are included (elevation, distance to deciduous forest, distance to fields). See Table 3 for all covariates.

https://doi.org/10.1371/journal.pone.0225355.g005
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Discussion

As predicted, male space use requirements were greater than those of females during all sea-

sons. However, reproductive season did not have a significant effect on home range size for

either sex, contrary to our predictions. Instead, both sexes appeared to use home ranges more

intensively during different reproductive seasons, specifically the kitten-rearing season for

females and the dispersal season for males. The factors influencing selection of home ranges

on the landscape did differ between sexes, as predicted. Home range selection patterns also

varied among seasons, and these seasonal variations were sometimes opposite for each sex,

indicating that they are driven by factors beyond shifting prey availability.

To maximize reproductive success, bobcats must acquire energy while mitigating risk.

Increased food intake, and resulting increases in body mass and nutritional reserves, may

increase reproductive success through outcompeting conspecifics of the same sex, increased

litter size, and increased body mass of neonates [56]. Male bobcats must maintain sufficient

body mass and locomotive energy to monopolize access to multiple females. Female bobcats

require consistent energy acquisition for successful pregnancy and kitten rearing, while mini-

mizing risk to kittens. Male bobcats in our study had larger home ranges than females, pre-

sumably to maximize breeding opportunities with females. Although male home ranges were

slightly larger on average during the breeding season, their home range size did not differ sig-

nificantly between breeding and non-breeding seasons. This lack of seasonal variation sup-

ports the prediction that it is less costly to maintain large territories year-round than to

reestablish them each year prior to the breeding season. If males increased territories immedi-

ately prior to the breeding season, it is more likely they would be nutritionally drained or

wounded by conspecifics as they enter the brief window of estrus. Likewise, female home

range size remained static across seasons, even though energetic demands increase during kit-

ten-rearing. Despite the stability in size, there were some seasonal variations in home range

shape, evidenced by seasonally shifting resource selection patterns. Perhaps it is too costly to

shift territories, but bobcats will alter use of the broader home range, making close forays to

capitalize on prey or receptive females. Seasonal changes in home range size or location are

typically found in far northern latitudes [13,19,21,22], where harsh winters may severely limit

prey availability. Conner et al. [57] suggested that when prey falls below a “critical availability”,

emigration or mortality must occur. Our findings likely reflect prey availability above this

threshold for the duration of our study, and reinforces that home range stability is more tenu-

ous towards the northern limits of the bobcat distribution.

Bobcats in our study area used home ranges more intensively during certain periods, indi-

cated by seasonal increases in movement rates for both sexes. The increased female movement

rates we observed during the kitten-rearing season are likely due to the need to increase forag-

ing but also attend to young, resulting in frequent movements between dens and foraging

sites. The energetic costs of lactation are extremely high [5], and female bobcat movements

have been found to increase during kitten rearing [23]. Increased movement rates for resident

males during the dispersal season may be due to increased territorial marking and patrolling

in response to dispersing males. Physical territorial conflicts between bobcats are thought to be

largely avoided by communicating through urine spraying, feces deposition, physical scrapes,

olfactory investigation, and vocalizations [58].

Male movement rates were greater than female movement rates throughout the year. Loco-

motion is energetically costly, particularly for larger mammals traveling uphill [59]. Previous

bobcat research conducted with temporally-coarse sampling rates often found greater male

movement rates [13,14], but finer-scale telemetry has found mixed results. In low-relief areas

of Mexico and North Carolina, there was a lack of sex effect on movement rates [24,60]. Male
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movement rates were greater in our mountainous study area, in the mountains of Vermont

[12], and an area of Mississippi with up to 20% slope [11]. Sex effects on movement rates may

be more pronounced in rugged topography, as females further seek to reduce energetic costs

associated with locomotion, whereas males still seek to maximize access to multiple females by

maintaining large territories. This aligns with Sikes and Kennedy [61] findings that eastern

bobcats are more sexually dimorphic in size in mountainous areas, and their suggestion that

this is caused by selective pressure for smaller female body size to minimize increased energetic

costs of locomotion in rugged terrain. On average, males had 1.5 times greater body mass than

females in our study [62]. Further, we found females avoided steep slopes during the breeding

and kitten-rearing seasons, but we did not observe this pattern in males. More data is needed

to further elucidate these patterns and their driving factors. Many studies of bobcat space use

have not reported sex-specific movement rates.

Both male and female bobcats strongly selected home ranges at higher elevations. In the

Valley and Ridge province of the Appalachian Mountains higher elevation ridges are almost

entirely public, undeveloped land while valleys are typically private and consist of agriculture

and development. Conversion of valley bottoms from rich riparian forests to agriculture and

development has probably shifted bobcat space use from historical patterns, leading to

increased use of ridges. In addition to decreased habitat quality, risk may be higher in valley

bottoms due to human land use patterns. Legal harvest and vehicle collisions, the leading

causes of mortality on our study, were most common in or near valleys.

Other resource selection patterns differed between sexes. Male bobcats exhibited selection

for fields and avoidance of deciduous forest, whereas female bobcats contrastingly exhibited

avoidance of fields and selection of deciduous forest. These opposing trends may be explained

by the valley and ridge topography of the study area, combined with differing reproductive

pressures and risk tolerances. Female home ranges almost exclusively occurred within a single

ridge, whereas male home ranges often contained multiple ridges (Fig 1), perhaps reflecting

attempts to overlap multiple female home ranges. In moving between ridges, male bobcats

must cross valleys and therefore encompass fields within their home ranges. Chamberlain

et al. [11] found male bobcat resource selection to vary by scale, and suggested that males may

select home ranges primarily based on the spatial distribution of females, which aligns with the

space use trends we observed. It is important to note that approximately 90% of the study area

consists of forested land cover, and although male bobcats did not use it more than available at

a landscape scale, forest was still heavily used.

Resource selection patterns also varied seasonally for both sexes, with opposing trends

sometimes evident. Male selection for fields and avoidance of deciduous forest increased dur-

ing summer (i.e. kitten rearing), whereas contrastingly, female avoidance of fields and selec-

tion for deciduous forest increased during kitten-rearing. The kitten-rearing season coincides

with the presence of white-tailed deer fawns, small mammals, and juvenile rabbits, all of which

are likely to be found in areas of dense vegetation along field edges [63–66]. Thus, males are

likely closer to fields than expected during summer to exploit these pulsed food resources. The

opposing trends we observed in females may represent female avoidance of male bobcats

when kittens are most vulnerable, which is presumably the time surrounding nursing and dur-

ing the first forays away from dens [67]. Although not yet observed in bobcats, infanticide has

been observed in many felid species, including lynx (Lynx spp.) [68,69]. Additionally, black

bears and coyotes are well-documented fawn predators [70–74], and eastern coyotes can be

more abundant in open areas, including the types of pasture found in our study area [75].

Thus, sympatric carnivore species may be frequenting areas near fields at this time, leading to

additional risk for female bobcats with kittens. Kitten survival is a crucial component of
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lifetime reproductive success, and female felids will adjust behavior preemptively to ensure

survival of young [67,76–78].

Some seasonal resource selection patterns were the same for both sexes, and were likely

influenced by shifts in the distribution of prey. Prey distribution is a main driver of bobcat

resource selection [79]. Both sexes exhibited selection for mixed forest during the dispersal

and breeding seasons, but they either exhibited weaker selection for, or did not select for,

mixed forest during the kitten-rearing season. Other studies have found bobcat selection for

conifers during winter months, which has been attributed to relatively higher concealment

cover and prey availability during winter [22,80,81]. Both sexes also selected deciduous forest

during the dispersal season, which overlaps with the peak of hard mast production. Squirrels

are the most common diet item of bobcats in this study area [29], and both gray squirrels

(Sciurus carolinensis) and fox squirrels (Sciurus niger) exhibit peaks in foraging behavior dur-

ing this time [82–84].

By examining home ranges, movements, and resource selection across sex and reproductive

season, we gained insight into the influence of life-history tradeoffs on bobcat spatial ecology.

A limitation of our study was the relatively small sample size of individuals, particularly of

female bobcats. Despite this, we observed sex and seasonal effects on space use, indicating that

these effects are strong. Future research should further examine the causal factors of sex effects

on movement rates and investigate possible avoidance of male bobcats by females when rear-

ing kittens.
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