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ABSTRACT. Grasslands are one of the most imperiled ecosystems globally, and the Lesser Prairie-Chicken (Tympanuchus pallidicinctus)
is an iconic grassland-obligate species with high conservation priority in the USA. Lesser Prairie-Chicken conservation is compounded
by its requirement for a spatial hierarchy of heterogeneous habitats, coupled with nearly all (> 95%) of its range being privately owned.
The U.S. Department of Agriculture currently offers technical and financial resources that facilitate prairie restoration, e.g.,
Conservation Reserve Program (CRP), and improve habitat quality and ecosystem services, e.g., Environmental Quality Improvement
Program, on private lands. We modeled Lesser Prairie-Chicken occupancy at two scales relative to covariates that described landscape
composition and configuration, anthropogenic development, drought-related climatic conditions, and conservation efforts from 2012
to 2016. Large-scale (225 km²) occupancy was most associated with shrubland, grassland patch size, and CRP range-wide. Patterns of
small-scale (56.25 km²) occupancy varied regionally, but key covariates included shrubland, grassland, and CRP landcover. These
covariate relationships may be useful for identifying conservation practices at different spatial scales and habitat factors that influence
Lesser Prairie-Chicken distributions ecoregionally. Notably, CRP-enrolled lands appear to serve as a surrogate for prairie habitat in
some ecoregions, especially in conjunction with larger extant patches of native habitat. Although not as influential as CRP at large
scales, every 2.25 km² of prescribed grazing increased the odds of site occupancy by 11%. In addition to supported covariates, we found
that for every 0.56 km² of industrial development at small scales and 2.25 km² of woodland cover (10%-canopy) at large scales, odds
of occupancy decreased by 22% and 13%, respectively. Our results suggest that increased amounts of native grassland and shrubland,
and in particular higher levels of CRP enrollment could expand LEPC distribution by as much as 17% (1418–1744 km²). Moreover,
our findings illustrate the potential for federal conservation policies to benefit the distribution of an imperiled species.

Présence multiéchelle du Tétras pâle : rôle des terres privées dans la conservation d'un oiseau en péril
RÉSUMÉ. Les prairies sont l'un des écosystèmes les plus menacés au monde, et la conservation du Tétras pâle (Tympanuchus
pallidicinctus), espèce emblématique qui dépend des prairies, est prioritaire aux États-Unis. La conservation du Tétras pâle représente
un énorme défi en raison du fait qu'il dépend d'une hiérarchie spatiale d'habitats hétérogènes et que la quasi-totalité (> 95 %) de son
aire de répartition se trouve en terres privées. Le ministère étatsunien de l'agriculture offre actuellement des ressources techniques et
financières qui encouragent la restauration des prairies, par exemple le Conservation Reserve Program (CRP), et améliorent la qualité
des habitats et les services écosystémiques, par exemple l'Environmental Quality Improvement Program, sur les terres privées. Nous
avons modélisé la présence du Tétras pâle à deux échelles en fonction de covariables décrivant la composition et la configuration du
paysage, l'aménagement du territoire, les conditions climatiques liées à la sécheresse et les efforts de conservation de 2012 à 2016. La
présence du tétras à grande échelle (225 km²) était surtout associée aux arbustes, à la taille des parcelles de prairie et au CRP dans
l'ensemble de son aire de répartition. La tendance de la présence à petite échelle (56,25 km²) a varié selon les régions, mais les principales
covariables comprenaient les arbustes, les prairies et l'étendue géographique du CRP. Ces relations entre covariables peuvent permettre
aux gestionnaires d'identifier les pratiques de conservation à différentes échelles spatiales et les facteurs d'habitat qui influent sur la
répartition écorégionale du Tétras pâle. En particulier, les terres inscrites au CRP semblent servir d'indicateurs d'habitat de prairies
dans certaines écorégions, surtout en combinaison avec de grandes parcelles d'habitat naturel. Bien qu'ils ne soient pas aussi influents
que les CRP à grandes échelles, chaque 2,25 km² de pâturage dirigé augmentait de 11 % les chances d'occupation d'un site. En plus des
covariables indicatrices, nous avons constaté que pour chaque 0,56 km² de développement industriel à petites échelles et 2,25 km² de
couvert forestier (10 % de couvert) à grandes échelles, les chances d'occupation diminuaient de 22 % et 13 %, respectivement. Nos
résultats indiquent qu'une augmentation des superficies de prairies et d'arbustes indigènes, et en particulier une adhésion accrue au
CRP, favoriseraient une expansion de la répartition du Tétras pâle de 17 % (1 418-1 744 km²). De plus, nos résultats illustrent le potentiel
des politiques fédérales de conservation à augmenter la répartition d'une espèce en péril.
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INTRODUCTION
Avian species are facing an unprecedented rate of decline globally.
In particular, grassland avifauna of North America and Europe
have experienced more dramatic declines than forest dwelling
species (BLI 2018). The causal factors for these changes in
abundance and distribution have varied but largely resulted from
conversion of grassland to other uses, e.g., intensive agriculture
or energy development (BLI 2018). In North America, grassland-
obligate birds are sensitive to the loss and fragmentation of native
prairie (Brennan and Kuvlesky 2005), and tend to select the largest
patches of grassland available (Ribic et al. 2009). Thus,
conservation efforts have focused primarily on retention of native
grasslands, and second on restoration (or reclamation) to improve
connectivity and quantity of grasslands. Most remnant
grasslands are privately owned and used to produce forage for
livestock (Samson et al. 2004).  

Historically, primary causes of disturbance in prairies were
periodic fire and herbivory from large herds of nomadic grazers,
which promulgated spatial heterogeneity in vegetative cover and
composition. However, under current land uses, most prairie
remnants are infrequently (or more likely never) burned and
repeatedly experience uniform grazing, which facilitates
vegetative homogeneity across the prairies (Samson et al. 2004,
Fuhlendorf et al. 2006). Loss of heterogeneity is spatially
hierarchical; at the broadest scales agriculture conversion of
prairie produces monocultures of crops, and redundant grazing
and lack of fire in uncropped land can lead to woody
encroachment or monotypic stand of herbaceous cover
(Fuhlendorf et al. 2006). Evidence is mounting that these
landscape changes are detrimental to grassland-obligate species
and ecosystem function (Engle et al. 2008, Hovick et al. 2015,
Pavlacky et al. 2017).  

Species presence at fine, localized spatial scales, e.g., an individual
home range or habitat patch, is conditional upon life-history
needs at broader landscape scales (Johnson 1980). These concepts
of hierarchal habitat selection are not new (Johnson 1980, Cody
1985), but analytical approaches are more prevalent now to
rigorously evaluate species occurrence and habitat use across
multiple scales. Such investigations are critical as anthropogenic
disturbances continue to remove and fragment available prairie
landscapes. Multiscale occupancy models enable us to explicitly
examine the hierarchy of habitat selection across distributional
limits while simultaneously accounting for imperfect detection
(Nichols et al. 2008, Pavlacky et al. 2012). In the case of prairies,
we can begin to characterize both broader landscapes that are
suitable for occupancy by avian species (first-order selection;
Johnson 1980), and conditions therein that are suitable for
occupancy at finer spatial scales (second-order selection; Johnson
1980). These models allow us to test hypotheses for habitat use
conditional on hierarchical landscape structure for obligate
grassland species.  

Reversing loss, fragmentation, and degradation of prairie
ecosystems may require coordinating bird conservation with
large-scale programs to stabilize upland bird populations
associated with grasslands (Brennan and Kuvlesky 2005). One
such approach is to use a flagship species to focus restoration or
conservation efforts (Caro 2010, Miller et al. 2017). In the
Southern Great Plains, the Lesser Prairie-Chicken (LEPC,

Tympanuchus pallidicinctus) is an iconic species that requires
habitat heterogeneity at multiple scales to meet life history needs
(Hagen and Elmore 2016). LEPC is a species of conservation
concern because it only occupies approximately 16% of its
historical distribution and is currently under consideration for
protections under the Endangered Species Act. Causes behind loss,
fragmentation, and degradation of native prairie are threats to
long-term persistence of LEPC (USFWS 2016). Thus,
understanding biotic and abiotic factors driving LEPC occupancy
across the Southern Great Plains may assist in delivering effective
conservation and restoration of prairie ecosystems beyond LEPC.  

Over 95% of land in LEPC distribution is privately owned (Van
Pelt et al. 2013), used mostly for livestock grazing and agricultural
cropping. These patterns of ownership and land use may require
unique solutions to restore habitat and conserve imperiled species
(Briske et al. 2017). Technical and financial resources through the
U.S. Department of Agriculture (USDA) can restore prairie (e.g.,
Conservation Reserve Program [CRP]) and improve habitat
quality and ecosystem services (e.g., Environmental Quality
Improvement Program [EQIP]) on private lands.  

CRP provides rental payments to landowners to convert marginal
farmland back to grasslands for a contractual period of 10 years.
EQIP offers technical and/or financial assistance to landowners to
develop conservation plans for their land to improve their resiliency
to drought and increase forage production for livestock. Funding
and prioritization of these conservation actions are guided by the
“Farm Bill,” i.e., Agricultural Improvement Act of 2018, which
establishes payment schedules, enrollment goals, and quotas.
Although not designed to deliver species conservation per se, direct
and indirect benefits from the land conservation practices therein
have been demonstrated to benefit prairie-obligate species like
LEPC. In particular, CRP can increase LEPC food availability,
nesting cover, and population resilience to drought (Fields et al.
2006, Ross et al. 2016a, Sullins et al. 2018). Alternatively, EQIP
investments have been spatially targeted through USDA’s Lesser
Prairie-Chicken Initiative (LPCI) with the goal of maximizing
conservation benefit to LEPC. There are 27 LPCI conservation
practices to improve or maintain rangeland health, but prescribed
grazing and brush management, i.e., removal of invasive trees, are
most important regionally (Bartuszevige and Daniels 2013).
Additionally, as part of a range-wide LEPC monitoring and
habitat improvement program administered by The Western
Association of Fish and Wildlife Agencies (WAFWA), financial
assistance was provided to landowners to develop conservation
easements as offsite mitigation for energy developments (Van Pelt
et al. 2013). Here, we developed predictive models of LEPC
multiscale occupancy to investigate covariate relationships over
time, expanding upon previous efforts that were temporally limited
(Hagen et al. 2016). Predictive multiscale models were used to
investigate second-order habitat relationships (Johnson 1980)
using the theory of hierarchical habitat use (Cody 1985), where
habitat use at the small scale (56.25 km²) is conditional on habitat
use at the large scale (225 km²). Relationships between occupancy
and covariates of interest have implications for landscape
conservation at multiple scales (George and Zack 2001), perhaps
suggesting management actions that could maintain or increase
the range-wide extent of occurrence of LEPC.  

We included covariates that described habitat composition and
configuration, anthropogenic development, drought-related
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climatic conditions, and conservation efforts; and we examined the
effects of covariates from 2012 to 2016 (Table 1). Our objectives
were to (1) quantify annual variation in the probability of LEPC
occupancy at two spatial scales over five years of study throughout
the entire species range, (2) identify the most important predictors
of LEPC occupancy range-wide and within each of four
ecoregions, (3) map LEPC occupancy probability range-wide as a
function of the most important predictor variables, and (4) project
how changes in restoration programs, i.e., CRP, may affect species
distribution. We predicted fragmentation effects, i.e., mean patch
size, of grassland, shrubland, or native habitat would be more
important than amounts of habitat, i.e., land cover, at the large
scale (Hagen et al. 2016). We expected occupancy to decline with
anthropogenic development, cumulatively or by individual type of
development, at the small scale (Hagen et al. 2011). Because at
certain life stages LEPC are sensitive to drought (Grisham et al.
2016), we predicted that range expansion or contraction at the
small scale would be correlated with spatial and temporal variation
in the duration of drought during spring and summer months. We
predicted that CRP and woodland landcover would influence site
occupancy at the large scale through processes of habitat loss and
fragmentation, and we expected prescribed grazing and
conservation easements would influence site occupancy at the
small scale by improving habitat condition. Finally, because
ecoregions differ with respect to biophysical and anthropogenic
processes, we predicted the above responses would vary by
ecoregion (Hagen and Elmore 2016).

METHODS

Study area
The study area spanned the entire estimated occupied range of
LEPC in 2011 (~80,000 km²), including portions of five states:
Colorado, Kansas, New Mexico, Oklahoma, and Texas
(McDonald et al. 2014; Fig. A1.1). Because of expected geographic
variation in LEPC habitats, distribution, and abundance, we
stratified the study area into four ecoregions for ecoregion-level
analyses: Shinnery Oak Prairie (SOPR), Sand Sagebrush Prairie
(SSPR), Mixed Grass Prairie (MGPR), and Shortgrass/CRP
Mosaic (SGPR; McDonald et al. 2014; Fig. A1.1).

Covariate development
We derived covariates that described anthropogenic land uses,
drought-related climatic conditions, conservation actions, and
vegetative landcover at two spatial scales (225 km² grid cells and
56.25 km² quadrants) within a Geographic Information System
(Table 1). As possible, the value of a grid- or quadrant-level
covariate could change annually as updated source datasets were
available. However, covariates representing primary road density,
transmission line density, and landcover types sourced from the
National Land Cover Database (Tables 1, A1.1) were assumed to
be constant through time.

Model justification and hypotheses
To identify the most important predictors of LEPC occupancy, we
used predictive models and the method of multiple working
hypotheses (Chamberlin 1965); we used model-based tests of
hypotheses for effects of landscape structure, anthropogenic
development, conservation practices, and drought-related climatic
conditions on site occupancy. We did this using covariate

relationships at two spatial scales (56.25 km² quadrants and 225
km² grid cells) for which LEPC may respond differently
(Fuhlendorf et al. 2002). The multiscale occupancy model
provides inference to relationships between occupancy patterns
and covariates of interest at these spatial scales. Animals select
habitat hierarchically (Hutto 1985), and understanding
occupancy patterns at multiple spatial scales is imperative for
successful management of wildlife and their habitats (Chalfoun
and Martin 2007).  

The primary management question for landscape structure
involved addressing the importance of habitat loss and
fragmentation on range contraction and expansion. We drew
inferences about habitat loss and fragmentation from patterns of
landscape composition (landcover type) and configuration (patch
size), respectively.  

We predicted that landscape configuration and mean patch size
of grassland, shrubland, or native habitat would be important for
site occupancy of LEPC (Hagen et al. 2016). However, we were
uncertain whether lands enrolled in CRP would contribute to core
habitat patches or function as landscape context of between-patch
matrix habitat. We hypothesized that LEPC would respond
negatively to increases in landcover and patch size of cropland
(Haukos and Zavaletta 2016). We also considered an alternate
hypothesis that LEPC would respond positively to landscape
heterogeneity (Fahrig et al. 2011), wherein probabilities of
occupancy would be highest at intermediate values of cropland
landcover or patch size (Ross et al. 2016a). We also investigated
quadratic responses for grassland, shrubland, and native habitat
to represent hypotheses for landscape heterogeneity involving
nonlinear responses to suitable habitat at the landscape scale.
Finally, we investigated possible interactions between ecoregion
(as a factor) and continuous landscape composition and
configuration covariates because we hypothesized that habitat-
occupancy relationships likely varied by ecoregion.  

We developed hypotheses for anthropogenic disturbance using
covariates for vertical structures, oil and gas wells, primary road
density, transmission lines, and landcover associated with
anthropogenic development (Table 1). We predicted LEPC
occupancy would decline with increasing anthropogenic
development cumulatively and by individual type of development
(Bartuszevige and Daniels 2016).  

We tested hypotheses for conservation efforts in the ecoregions
using covariates for CRP-enrolled land, LPCI-prescribed grazing,
and WAFWA conservation easements. We predicted that LEPC
occupancy would increase with increasing landcover of LPCI core
conservation practices, including prescribed grazing and CRP
(USFWS 2011, Hagen et al. 2016). We tested whether LEPC
responded to CRP in relation to (1) its contribution to land cover
and configuration of general habitat, (2) its additive area as
between-patch matrix habitat, and (3) the additive effect of its
mean patch size. We evaluated quadratic relationships for percent
landcover and patch size of CRP to investigate whether
occupancy was highest at intermediate amounts of these
covariates.  

Climate change in the Southern Plains is expected to influence
the population viability of LEPC. Interactions between spring
precipitation and vegetation cover may potentially influence key
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Table 1. Descriptions and sources of covariates used to predict multiscale occupancy patterns of the Lesser Prairie-Chicken
(Tympanuchus pallidicinctus) from the range-wide monitoring program, 2012–2016. The abbreviated name was used to identify variables
within model formulas.
 
Group Covariate Abbreviated Name Description Source

1

Anthropogenic Development landcover Development Percentage of area (%) with anthropogenic development. Includes low,
medium, and high intensity development categories.

NLCD

Anthropogenic Oil-gas well density Well Density of active oil or gas wells (wells/km²). IHS
Anthropogenic Primary road density Road Density of primary roads (km/km²). WAFWA
Anthropogenic Transmission line density Transmission Density of electrical transmission lines (km/km²). PLATTS
Anthropogenic Vertical structures Vertical Density of vertical structures (structures/km²) considered obstacles to aviation

users.
FAA

Climate Spring green weeks Green Number of weeks during March and April not classified as abnormally dry,
moderate, severe, extreme, or exceptional drought.

DM

Climate Summer drought weeks Drought Number of weeks during May and June classified as severe, extreme, or
exceptional drought.

DM

Conservation CRP-enrolled land CRP Percentage of area (%) enrolled in the Conservation Reserve Program (CRP). USDA
Conservation Patch size of CRP-enrolled land CRPPatch Average size (km²) of patches of CRP-enrolled land. USDA
Conservation Prescribed grazing landcover Grazing Percentage of area (%) enrolled in prescribed grazing practices. B&D 2013
Conservation WAFWA conservation area

landcover
Conservation Percentage of area (%) enrolled in conservation plans administered by

WAFWA.
WAFWA

Conservation WAFWA conservation area-grazing
landcover

ConservationGrazing Percentage of area (%) enrolled in conservation plans administered by
WAFWA or enrolled in LPCI prescribed grazing practices.

WAFWA

Detection Date Date Ordinal day of year the survey was conducted. Field
Detection Observer Observer The observation position (front or back seat) within the aircraft. Field
Detection Time Time Hours after sunrise the survey was conducted. Field
Other Ecoregion Ecoregion Ecoregion identifier (1 = SOPR, 2 = SSPR, 3 = MGPR, 4 = SGPR) Field
Other Trend Trend Year (continuous) the survey was conducted. Field
Other Year Year Year (categorical) the survey was conducted. Field
Vegetative
Landcover

Cedar landcover Cedar Percentage of area (%) with eastern red cedar (Juniperus virginiana). NLCD

Vegetative
Landcover

Cropland landcover Cropland Percentage of area (%) used for production of annual or woody perennial crops
or in active tilling.

NLCD

Vegetative
Landcover

Cropland patch size CroplandPatch Average size (km²) of cropland landcover patches. NLCD

Vegetative
Landcover

Grassland landcover Grass Percentage of area (%) dominated by gramanoid or herbaceous vegetation not
subject to intensive management such as tilling.

NLCD

Vegetative
Landcover

Grassland patch size GrassPatch Average size (km²) of grassland landcover patches. NLCD

Vegetative
Landcover

Mesquite landcover Mesquite Percentage of area (%) with mesquite (Prosopis spp.). NLCD

Vegetative
Landcover

Mesquite-cedar landcover MesquiteCedar Percentage of area (%) with eastern red cedar or mesquite. NLCD

Vegetative
Landcover

Native habitat landcover NativeHabitat Percentage of area (%) dominated by shrubs, including trees < 5 m tall, or
gramanoid or herbaceous vegetation not subject to intensive management such
as tilling.

NLCD

Vegetative
Landcover

Native habitat patch size NativeHabitatPatch Average size (km²) of native habitat landcover patches. NLCD

Vegetative
Landcover

Shrubland landcover Shrub Percentage of area (%) dominated by shrubs, including trees < 5 m tall. NLCD

Vegetative
Landcover

Wetland landcover Wetland Percentage of area (%) dominated by perennial herbaceous vegetation and with
soils periodically saturated or covered with water.

NLCD

Vegetative
Landcover

Woodland (> 1% canopy cover)
landcover

Woodland1 Percentage of area (%) with tree canopy cover > 1%. NRCS

Vegetative
Landcover

Woodland (> 5% canopy cover)
landcover

Woodland10 Percentage of area (%) with tree canopy cover > 5%. NRCS

Vegetative
Landcover

Woodland (> 10% canopy cover)
landcover

Woodland5 Percentage of area (%) with tree canopy cover > 10%. NRCS

Vegetative
Landcover and
Conservation

General habitat landcover GeneralHabitat Percentage of area (%) dominated by shrubs, including trees < 5 m tall, or
gramanoid or herbaceous vegetation not subject to intensive management such
as tilling, or enrolled in the Conservation Reserve Program, or planted for
livestock grazing or the production of seed or hay crops.

NLCD

Vegetative
Landcover and
Conservation

General habitat patch size GeneralHabitatPatch Average size (km²) of general habitat landcover patches. NLCD

1
 Sources: B&D 2013 (Bartuszevige and Daniels 2013)

DM (U.S. Drought Monitor, http://droughtmonitor.unl.edu/)
FAA (Federal Aviation Administration, https://www.faa.gov/air_traffic/flight_info/aeronav/digital_products/dof/)
Field (field-collected data during surveys)
IHS (IHS Markit, https://ihsmarkit.com/products/us-oil-gas-spatial-layers.html)
NLCD (National Land Cover Database, https://www.mrlc.gov/nlcd2011.php)
NRCS (Natural Resources Conservation Service, https://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/)
PLATTS (S&P Global Platts, https://www.platts.com/products/gis-data-electric-power)
USDA (United States Department of Agriculture 2014)
WAFWA (Western Association of Fish and Wildlife Agencies Lesser Prairie-Chicken Geodatabase, Southern Great Plains Crucial Habitat Assessment Tool [SGP CHAT] 2011,
https://www.sgpchat.org/).
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population vital rates, such as nest survival and recruitment
(Grisham et al. 2016). We predicted that LEPC range expansion
would be correlated with spatiotemporal variation in the duration
of drought conditions during spring and summer (Table 1).
Extreme temperatures during summer drought can negatively
influence abundance of invertebrate prey, with consequences for
LEPC recruitment and survival (Grisham et al. 2016).

Sampling design and field surveys
The sampling design and field methodology were detailed by
McDonald et al. (2014), and we offer only a brief  summary here.
As part of a range-wide LEPC monitoring program administered
by WAFWA, a spatially balanced sampling procedure was used
to select 15 km × 15 km grid cells to survey for LEPC. Survey
efforts varied annually and by ecoregion, but approximately 250–
300 total grid cells were surveyed each year, with each grid cell
surveyed once per year (McDonald et al. 2014). We subdivided
each grid cell into four quadrants (7.5 km × 7.5 km each; Hagen
et al. 2016). During 2012–2016, surveyors flew a single 7.5-km
line transect through each quadrant during March, April, or May
and recorded detections of prairie-chickens within 300 m of the
line using a double-observer method and four observers in the
helicopter. LEPCs, Greater Prairie-Chickens (T. cupido), and their
hybrids co-occur in portions of the SGPR, but are not reliably
distinguishable during aerial surveys. Therefore, on-the-ground
visits were conducted to verify species identification in areas where
mixed-species groups were possible (McDonald et al. 2014, Hagen
et al. 2016).

Statistical analysis
Sampling framework for multiscale occupancy
We aggregated and summarized LEPC detection data such that
large-scale occupancy (ψ) corresponded to LEPC presence on 15-
km × 15-km grid cells, small-scale occupancy (θ) corresponded
to species presence in four quarters of the grid cell (7.5-km × 7.5-
km quadrants) given presence within grid cells, and detection
probability (p) corresponded to detections by observers given
presence in quadrants. The encounter history was arranged by
treating independent observers in the helicopter as independent
sampling occasions to estimate the probability of detection
(Hagen et al. 2016). We pooled encounters of LEPC across
observer in the front-left seat and pilot in the front-right seat (first
occasion or search). Similarly, we pooled encounters across
observers in the back-left seat and back-right seat (second
occasion or search). This yielded an encounter history for each
quadrant with two occasions (or searches) each time a survey
flight was conducted. The multiscale model can be interpreted as
having two components of the observation process; the
probability of detection by observers (p) given presence in the
quadrants and the probability of availability within quadrants (θ)
given presence in the grid cells (Hagen et al. 2016, Pavlacky et al.
2012). To account for heterogeneity in detection probability from
multiple observers on a single day (MacKenzie et al. 2018), we
considered covariates for ordinal date and time since sunrise to
account for within-season variation due to timing of surveys.
Although, we did not repeatedly sample line transects within
seasons, estimates of small-scale occupancy can be interpreted as
the probability of spatial availability, which accounts for the
probability that LEPC may be unavailable for sampling at line

transects across days and years of the study (Pavlacky et al. 2012,
Hagen et al. 2016).

Implicit dynamics multiscale occupancy
We estimated detection and occupancy probabilities of LEPC
using implicit dynamics (MacKenzie et al. 2018) version of
multiscale occupancy model (Nichols et al. 2008, Pavlacky et al.
2012). The multiscale occupancy model provides inference to
relationships between occupancy patterns and covariates of
interest at two spatial scales. Parameters of the model were (1)
detection probability pijot for observer o, quadrant j, grid cell i and
year t given the quadrant and grid cell were occupied; (2) small-
scale occupancy θijt for quadrant j, grid cell i and year t given the
grid cell was occupied; and (3) large-scale occupancy ψit for grid
cell i and year t.  

We ranked the candidate set of models using Akaike’s
Information Criterion adjusted for sample size (AICc; Burnham
and Anderson 2002), with sample size defined by the number of
15-km × 15-km grid cells surveyed across years. We evaluated
multimodel support for hypotheses using evidence ratios and
cumulative AICc weights for balanced model sets ([w+(j)];
Burnham and Anderson 2002). We determined variable support
for unbalanced model sets according to γi = [wi/(1-wi)]/[fi/(1-fi)],
where wi is the cumulative AICc weight and fi is the frequency of
the covariate i in the model set (Doherty et al. 2012). We evaluated
effect sizes and conditional 90% confidence intervals (CIs) for β 
parameters with respect to 0. We model-averaged estimates of
large-scale or small-scale occupancy for models with ΔAICc < 4
(Burnham and Anderson 2002).

Annual variation in site occupancy
We investigated annual variation in large-scale (ψ) and small-scale
(θ) occupancy of LEPC to evaluate temporal patterns within four
ecoregions. Candidate sets for ψ and θ were each composed of
five models, including the full model (ecoregion + year +
ecoregion * year) and reduced models (ecoregion + year),
(ecoregion), (year), and intercept (.) only. We modeled detection
(p) according to three continuous covariates for ordinal date, time
after sunrise, and annual trend, and three factor covariates for
ecoregion, observer, and year (Table 1). We excluded detection
models containing both a continuous covariate for annual trend
and factor covariate for year. The candidate model set for
detection included all subsets of five covariates and intercept only
model p(.), for a total of 61 models. We fit all subsets of covariates
and parameters (Doherty et al. 2012) for a total of 1200 models
using the RMark interface (Version 2.2.4, Laake 2013, R Core
Team 2017) for program MARK (Version 8; White and Burnham
1999). Although Burnham and Anderson (2002) cautioned
against all subsets model selection, applying model-averaging to
all subsets of models may reduce bias in parameters and model
weights (Doherty et al. 2012). It is recommended to consider fewer
models than the number of samples, as in our analysis (n = 1404),
and this is expected to reduce the risk of spurious results
(Burnham and Anderson 2002). We estimated rates of change in
occupancy (λt) between the t temporal oscillations in small-scale
occupancy (θt) according to λt = θt+1/ θt (MacKenzie et al. 2018).
We approximated the variance of λt using the delta method
(Powell 2007) and calculated 90% log-normal CIs for λt (Burnham
et al. 1987).

http://www.ace-eco.org/vol15/iss2/art17/


Avian Conservation and Ecology 15(2): 17
http://www.ace-eco.org/vol15/iss2/art17/

Table 2. Summary of the number of covariates allowed during the plausible-combinations stage of model selection for multiscale
occupancy models fit to ecoregional subsets of the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) data from the range-wide
monitoring program, 2012–2016. The multiscale occupancy model included submodels for large-scale occupancy (ψ), small-scale
occupancy (θ), and detection probability (p). When a quadratic effect was included, the main effect for that covariate was also included,
resulting in two covariates in the model for each quadratic term. When an interaction effect was included, the main effect for each
interacting covariate was also included, resulting in three covariates in the model for each interaction term. Ecoregion acronyms are
defined in text.
 

Submodel

Ecoregion ψ θ p

SOPR ≤ 5, with ≤ 3 main effects ≤ 3 ≤ 5, with ≤ 3 main effects
SSPR ≤ 2, with no quadratics or interactions ≤ 2, with no quadratics or interactions ≤ 2, with no quadratics or interactions
MGPR ≤ 3 ≤ 3 ≤ 5, with ≤ 3 main effects
SGPR ≤ 5, with ≤ 3 main effects ≤ 3 ≤ 5, with ≤ 3 main effects

Range-wide relationships between covariates and
multiscale occupancy.
We used all range-wide data in the four ecoregions from 2012 to
2016 (McDonald et al. 2016), but did not use auxiliary data
collected within SGPR and SOPR during 2015 (Hagen et al.
2016). Prior to model selection, we used a variable screening step
to identify potential curvilinear quadratic relationships for
continuous covariates, and two-way interactions between
covariates for each parameter. We fit univariate and quadratic
models for each covariate, and to evaluate two-way interactions,
we fit additive and multiplicative models for covariates. We
selected quadratic relationships for entry into the analysis when
AICc was lower than a univariate relationship. In a similar fashion,
we selected a two-way interaction for entry into the analysis when
AICc was lower for the multiplicative model than the additive
model. For (ψ, we fit quadratic and interaction models while
holding constant θ(Ecoregion) and p(Observer + Ecoregion +
Year). For (θ), we fit quadratic and interaction models while
holding constant ψ(Year) and p(Observer + Ecoregion + Year).
For (p), we fit quadratic and interaction models while holding
constant ψ(Year) and at θ(Ecoregion).  

Model selection procedures increase in complexity when models
contain multiple submodels and when research objectives require
modeling the effect of multiple, potential predictor variables
(Bromaghin et al. 2013). The multiscale occupancy model we used
was composed of three separate submodels: large-scale
occupancy (ψ), small-scale occupancy (θ), and detection
probability (p; Nichols et al. 2008, Pavlacky et al. 2012, Hagen et
al. 2016). Moreover, our objectives necessitated modeling ψ, θ,
and p as functions of multiple predictor variables. We therefore
adopted a two-staged model-selection approach to first select
plausible structures for each submodel, then to consider all
possible combinations of plausible submodel structures (Table
2).  

The plausible-combinations approach proceeded in two steps.
First, we identified plausible covariate relationships for each
parameter independently, and second we combined all-model
subsets of the submodels across parameters to identify
parsimonious full-models (Bromaghin et al. 2013). For each
parameter, we selected high-weight submodels with AICc weight
wi > 0.01 and high-likelihood submodels with -2log(L) <
maximum [-2log(L) of high-weight models] for entry into the

second step of the plausible-combinations model selection
analysis (Bromaghin et al. 2013).  

Prior to plausible combinations model selection, we constrained
the candidate set of models by omitting submodels with
correlated covariates (Pearson’s ρ > 0.6). We flagged submodels
with diminutive (< 0.00001) standard errors (SE), and submodels
with small (< 0.5) or large (> 5) t-ratios (β/SE) for inspection.
Additionally, we constrained the candidate set of models by
omitting submodels with redundant covariates, defined as those
representing similar biological hypotheses with nonexhaustive
and nonexclusive classification, e.g., grassland landcover and
native habitat were not allowed in the same model. Finally, we
expanded the candidate set of models by appending submodels
that replaced main effects by supported quadratic relationships
for each covariate, and two-way interactions.  

First, we ran all subsets of 29 covariates for ψ with a maximum
of three covariates per models while holding constant θ
(Ecoregion) and p(Observer + Ecoregion + Year), resulting in a
candidate set of 8249 plausible models. For θ, we ran all subsets
of 19 covariates with a maximum of four covariates per model
while holding constant ψ(Year) and p(Observer + Ecoregion +
Year), resulting in a candidate set of 16,218 models. For p, we ran
all subsets of six covariates with a maximum of four covariates
per model while holding constant ψ(Year) and θ(Ecoregion),
resulting in a candidate set of 46 models. Although, considering
a large number of candidate models may increase the risk of
spurious results (Burnham and Anderson 2002), the plausible
combinations approach requires orders of magnitude fewer
models than the all-subsets approach while providing a more
comprehensive search of parameter space than other sequential
model building approaches (Bromaghin et al. 2013). Although it
may be questionable to consider sets of thousands of candidate
models due to the risk of spurious results, model complexity and
the goal to predict occupancy at multiple scales in our study
required this approach.  

Second, we combined all subsets of the high-weight and high-
likelihood submodels across parameters (Bromaghin et al. 2013),
for a total of 40 plausible model combinations. We considered
additional models in an exploratory a posteriori to check whether
data supported models with greater complexity than those with
conditions imposed in the a priori analyses. We added each
nonredundant candidate covariates one at a time to the top a
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priori selected models, and we evaluated all subsets of amended
submodels, for a total of 8526 models. In addition, we ran the
highest ranking covariate model from Hagen et al. (2016) to
investigate previously identified effect size for LPCI prescribed
grazing [p(Ecoregion + observer) θ(Ecoregion + CRP) ψ
(NativeHabitatPatch + Grazing)]. We evaluated effect sizes and
conditional 90% CI for the covariate β coefficients with respect
to 0, including odds ratio interpretations for the β coefficients
(MacKenzie et al. 2018). We model-averaged estimates of large-
scale or small-scale occupancy for all models within ΔAICc < 4
(Burnham and Anderson 2002).

Mapping range-wide occupancy
We model-averaged predictions of ψ and θ according to covariate
values in the sampling frame. We multiplied conditional estimates
of θ ij for each of the j quadrants in grid cell i by the corresponding
estimate ψ i i to arrive at unconditional estimates of small-scale
occupancy (θ ij * ψ i) for all quadrants in the sampling frame
(Nichols et al. 2008, Pavlacky et al. 2012). We approximated SEs
for model-averaged unconditional estimates of small-scale
occupancy using the delta method (Powell 2007). We estimated
the coefficient of variation (CV) for unconditional estimates of
small-scale occupancy to quantify uncertainty around the
predicted occupancy distribution. We mapped predicted
occupancy for 477 grid cells that intersected the occupied range
of LEPC plus a 16 km buffer (Van Pelt et al. 2013). Because some
covariates change over time, we used covariate values for 2016 to
map predicted occupancy presented herein.

Simulated effect of changes to amount of CRP-
enrolled land
Modeling range-wide relationships between covariates and
multiscale occupancy revealed that CRP was a primary driver of
LEPC occupancy. Thus, we conducted a simulation to
demonstrate the changes in predicted occupancy as a function of
fluctuations in CRP. We used the final set of 40 models to the
range-wide dataset to estimate model-averaged occupancy rates
assuming nine scenarios for CRP enrollment, the baseline
scenario and eight alternatives. The baseline scenario was defined
as the amount of CRP enrollment observed in 2016. Alternative
scenarios included 80–120% of this baseline amount of CRP-
enrolled lands in increments of 5%. For example, to simulate the
amount and distribution of CRP enrollment under an 80%-of-
baseline scenario, we multiplied the baseline amount of CRP in
each quadrant and grid cell by 0.80. All other covariates were held
constant. We then generated a model-averaged prediction of the
unconditional probability of small-scale occupancy (θ ij * ψ i) for
each of the 1908 quadrants in the 477 grid cells that intersected
the occupied range of LEPC plus a 16 km buffer (Van Pelt et al.
2013). The area occupied by LEPC was estimated as the mean
value of (θ ij * ψ i), multiplied by the area of the ecoregion. We
summarized the effect that changes in CRP levels had on
occupancy by calculating the predicted change in total area
occupied for each scenario relative to the estimated baseline area.
We used the delta method (Powell 2007) to calculate 90% CI for
change in area occupied based on quadrant-specific variances of
unconditional small-scale occupancy estimated for each
quadrant. For simplicity, we represent unconditional small-scale
occupancy (θ ij * ψ i) as simply θj in the equations below, Nk is
the total amount of quadrants within ecoregion, Ak is the area of

the ecoregion (km²), and quadrants are again indexed by j. The
average change in unconditional small-scale occupancy from the
baseline to an alternate CRP scenario (δk) was calculated as 

  θ  δ

δk =
Σ j=1(θjk - θjk        )baseline alternate

Nk
, (1)

ΔAOk = δk Χ Ak, (3)

V(ΔAOk) = Ak Χ V(δk).2
(4)

V(δk) = 1
Nk

2 [Σj=1 V(θjk ) +baseline Σj=1 V(θjk )],alternateNk Nk
(2)

Nk

Nk

  

with an estimated variance of 

δk =
Σ j=1(θjk - θjk        )baseline alternate

Nk

, (1)

ΔAOk = δk Χ Ak, (3)

V(ΔAOk) = Ak Χ V(δk).2
(4)

V(δk) = 1
Nk

2 [Σj=1 V(θjk ) +baseline Σj=1 V(θjk )],alternateNk Nk
(2)

.
  

The change in area occupied (ΔAOk) was calculated as 

δk =
Σ j=1(θjk - θjk        )baseline alternate

Nk

, (1)

ΔAOk = δk Χ Ak, (3)

V(ΔAOk) = Ak Χ V(δk).2
(4)

V(δk) = 1
Nk

2 [Σj=1 V(θjk ) +baseline Σj=1 V(θjk )],alternateNk Nk
(2)

,  

with an estimated variance of 

δk =
Σ j=1(θjk - θjk        )baseline alternate

Nk

, (1)

ΔAOk = δk Χ Ak, (3)

V(ΔAOk) = Ak Χ V(δk).2
(4)

V(δk) = 1
Nk

2 [Σj=1 V(θjk ) +baseline Σj=1 V(θjk )],alternateNk Nk
(2)

RESULTS

Annual variation in site occupancy
We found almost no evidence for annual variation in ψ and only
limited evidence in θ (Table A1.1, Fig. 1). However, range
dynamics oscillated temporally in θ (Fig. 1). Within the SGPR,
LEPC experienced a 27% range contraction between 2012 and
2013 (λ = 0.73; 90% CI = 0.53, 1.01), 15% range contraction
between 2013 and 2014 (λ = 1.15; 90% CI = 0.83, 1.60), 29% range
expansion between 2014 and 2015 (λ = 1.29; 90% CI = 0.97, 1.72)
and 19% range contraction between 2015 and 2016 (λ = 0.81; 90%
CI = 0.62, 1.07; Fig. 1). Considering the change between low and
high occupancy years in the SGPR, LEPC range expanded by
49% between 2013 and 2015 (λ = 1.49; 90% CI = 1.09, 2.02; Fig.
1). The CI for λ between 2012 and 2013 narrowly covered 1, and
CIs between 2013 and 2015 excluded 1, indicating a measurable
range contraction and expansion, respectively over these time
frames. Magnitude of temporal patterns of change in range was
similar in regions (Fig. 1), because spatial and temporal effects of
occupancy were additive. In addition, θ was greater in the SGPR
than in the other ecoregions across years (Table 3). Detection was
greater for back-seat observers than front-seat observers, and p 
increased over survey years, with increasing time after sunrise,
and ordinal date (Table A1.2).

Multiscale covariate relationships
The first step of plausible-combinations model selection
identified two plausible submodels for large-scale occupancy, ψ
(CRP + GrassPatch + Shrub) and ψ(CRP + CRP² + GrassPatch
+ Shrub). Because adding CRP² did not appreciably decrease the
-2log(L), it was not considered a competing model (Arnold 2010).
Thus, we considered only ψ(CRP + GrassPatch + Shrub) as the
single plausible submodel for ψ in the second step of plausible-
combination models selection (Table A1.3).  

We identified three plausible submodels for θ (Table A1.4).
However, we did not consider the third-ranked model (ΔAICc =
6.00), containing Grass² as a competing model, because it did not
appreciably decrease the -2log (L) relative to the second ranked

λ

λ
λ

λ

λ
λ

δ

θij

θij * ψi

ψi

θij * ψi

θij * ψi

θij * ψi
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Fig. 1. The small-scale occupancy (θ) of the Lesser Prairie-
Chicken (Tympanuchus pallidicinctus) by ecoregion and year for
the (A) Shinnery Oak Prairie, (B) Sand Sagebrush Prairie, (C)
Mixed Grass Prairie, and (D) Shortgrass CRP/Mosaic Prairie
from the range-wide monitoring program, 2012–2016. The
filled symbols are model averaged estimates of small-scale
occupancy and the error bars are unconditional 90%
confidence intervals.

Table 3. Parameter estimates, standard errors (SE), and lower and
upper 90% confidence limits (LCL and UCL, respectively), for
large-scale occupancy (ψ), small-scale occupancy (θ), and
detection (p) of the Lesser Prairie-Chicken (Tympanuchus
pallidicinctus) from the highest ranking model (Table A1.1) for
annual variation in θ from the range-wide monitoring program,
2012–2016.
 
Parameter Estimate SE LCL UCL

ψ(.) -0.803 0.132 -1.020 -0.586
θ(intercept) -0.427 0.245 -0.831 -0.024
θ(Year 2013) -0.496 0.283 -0.963 -0.030
θ(Year 2014) -0.305 0.280 -0.766 0.155
θ(Year 2015) 0.105 0.282 -0.359 0.568
θ(Year 2016) -0.240 0.281 -0.703 0.222
θ(MGPR) -0.932 0.215 -1.286 -0.578
θ(SSPR) -1.549 0.273 -2.000 -1.099
θ(SOPR) -1.318 0.230 -1.697 -0.940
p(intercept) -0.888 0.332 -1.435 -0.341
p(Time) 0.309 0.189 -0.001 0.620
p(Observer) 1.026 0.171 0.744 1.308
p(Trend) 0.127 0.086 -0.015 0.269

model (Arnold 2010). Thus, we considered the top two models in
the second step of the plausible-combinations. We identified 20
plausible submodels for p (Table A1.5), and we considered these
models in the second step of the plausible-combinations.  

In the second step, we ran all subsets (n = 40) of plausible
submodels across parameters. Overall, we found considerable
model selection uncertainty and 7 candidate models with ΔAICc 
< 2 (Table 4). The top-ranked model for multi-scale occupancy

contained effects of Shrub, GrassPatch size, and CRP on ψ; CRP,
Grass, Shrub, Ecoregion, CRP*Ecoregion, and Grass*Ecoregion
on θ; and effects of Observer, Trend, and Time on p (Table 4).
The second ranked model included the additional effect of
Ecoregion on p, but was otherwise equivocal to the highest
ranking model (Table 4).  

Large-scale occupancy increased with increasing Shrub,
GrassPatch, and amount of CRP (90% CIs ≠ 0; Fig. 2, Table 5).
Small-scale occupancy varied ecoregionally showing large
positive effects with increasing amounts of CRP in the SGPR,
smaller positive effects in the SSPR and MGPR, and a much
smaller positive effect of CRP in the SOPR (Fig. 3; 90% CIs ≠ 0
for interaction terms).

Fig. 2. The large-scale occupancy (ψ) of the Lesser Prairie-
Chicken (Tympanuchus pallidicinctus) at 15 × 15-km grid cells
by the (A) percentage (%) of shrubland landcover (Grass), (B)
mean patch size (km²) of grassland patch size (GrassPatch),
and (C) percentage of area enrolled in the Conservation
Reserve Program (CRP) from the range-wide monitoring
program, 2012–2016. The bold trend lines are model averaged
estimates of large-scale occupancy at the mean values of other
covariates in the model and the bounding lines are 90% CIs.

Small-scale occupancy increased with increasing Shrub, and the
slope of the positive effect of Shrub was identical in all ecoregions
(Fig. 4). However, the effect was most pronounced in the SOPR
because site occupancy and the landcover of shrubland was
greater in this ecoregion (Fig. 4). Small-scale occupancy showed
a large increase with increasing CRP in the SGPR, followed by
much smaller effects in the SSPR, MGPR, and SOPR (Fig. 4,
Table 5). The interaction between CRP*Ecoregion indicated the
slope of the CRP was much less in the SSPR, MGPR and SOPR
than the slope of the CRP effect in the SGPR (90% CIs ≠ 0; Fig.
4, Table 5).  

Multimodel inference using cumulative AICc weights indicated
models with the Grass*Ecoregion interaction showed an 80%
probability of occurring in the top model, whereas models
including Grass² and interactions with Ecoregion showed a 20%
probability of occurring in the top model. In the top-ranked
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Table 4. Model selection for covariate effects on the large-scale occupancy (ψ), small-scale occupancy (θ), and detection (p) of the
Lesser Prairie-Chicken (Tympanuchus pallidicinctus) from the range-wide monitoring program, 2012–2016. The model-selection metrics
are the value of the minimized -2 log-likelihood function [-2loge(L)], parameter number (K), Akaike’s Information Criterion adjusted
for sample size (AICc), difference between model and minimum AICc value (ΔAICc) and AICc weight (wi). Models with ΔAICc < 2 are
shown.
 
Model K -2log() AIC

c
ΔAIC

c
w

i

ψ(CRP + GrassPatch + Shrub) θ(CRP + Grass + Shrub + Ecoregion + CRP*Ecoregion + Grass*
Ecoregion) p(Time + Observer + Trend)

21 2472.78 2515.45 0.00 0.111

ψ(CRP + GrassPatch + Shrub) θ(CRP + Grass + Shrub + Ecoregion + CRP*Ecoregion + Grass*
Ecoregion) p(Observer + Trend + Ecoregion + Date)

24 2466.77 2515.64 0.20 0.101

ψ(CRP + GrassPatch + Shrub) θ(CRP + Grass + Shrub + Ecoregion + CRP*Ecoregion + Grass*
Ecoregion) p(Time + Observer)

20 2475.21 2515.82 0.37 0.092

ψ(CRP + GrassPatch + Shrub) θ(CRP + Grass + Shrub + Ecoregion + CRP*Ecoregion + Grass*
Ecoregion) p(Observer + Trend)

20 2475.77 2516.37 0.93 0.070

ψ(CRP + GrassPatch + Shrub) θ(CRP + Grass + Shrub + Ecoregion + CRP*Ecoregion + Grass*
Ecoregion) p(Time + Observer + Trend + Date)

22 2471.89 2516.62 1.18 0.062

ψ(CRP + GrassPatch + Shrub) θ(CRP + Grass + Shrub + Ecoregion + CRP*Ecoregion + Grass*
Ecoregion) p(Time + Observer + Trend + Ecoregion)

24 2468.11 2516.98 1.53 0.052

ψ(CRP + GrassPatch + Shrub) θ(CRP + Grass + Shrub + Ecoregion + CRP*Ecoregion + Grass*
Ecoregion) p(Observer + Trend + Ecoregion)

23 2470.50 2517.30 1.85 0.044

Fig. 3. The small-scale occupancy (θ) of the Lesser Prairie-
Chicken (Tympanuchus pallidicinctus) at 7.5 × 7.5-km
quadrants by the percentage (%) of area enrolled in the
Conservation Reserve Program (CRP) in the (A) Shinnery Oak
Prairie, (B) Sand Sagebrush Prairie, (C) Mixed Grass Prairie,
and (D) Shortgrass CRP/Mosaic Prairie from the range-wide
monitoring program, 2012–2016. The bold trend lines are
model averaged estimates of small-scale occupancy at the mean
values of other covariates in the model and the bounding lines
are 90% CIs.

model, small-scale occupancy showed a large linear increase with
increasing Grass in the SGPR, a smaller positive effect in the
MGPR, and diminutive effects of Grass in the SOPR and SSPR
(Fig. 5, Table 5). The interaction between Grass*Ecoregion
indicated the slope of Grass was much less in the SSPR, SOPR,
and MGPR than in the SGPR (Fig. 5, Table 5). The 90% CIs for
interaction terms of Grass in the best model did not include 0,

Fig. 4. The small-scale occupancy (θ) of the Lesser Prairie-
Chicken (Tympanuchus pallidicinctus) at 7.5 × 7.5-km
quadrants by the percentage (%) of shrubland landcover
(Shrub) in the (A) Shinnery Oak Prairie, (B) Sand Sagebrush
Prairie, (C) Mixed Grass Prairie, and (D) Shortgrass CRP/
Mosaic Prairie from the range-wide monitoring program, 2012–
2016. The bold trend lines are model averaged estimates of
small-scale occupancy at the mean values of other covariates in
the model and the bounding lines are 90% CIs.

but the CI for the interaction term for Grass and MGPR narrowly
included zero in the second best model, suggesting a marginal
effect for this Ecoregion (Table 5).

Exploratory model selection
The top-ranked model for the exploratory analysis of LEPC
occupancy contained the effects of Woodland-10 on ψ and
Development on θ (Table 6). The evidence ratios indicated the
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Table 5. Parameter estimates, standard errors (SE), and lower and
upper 90% confidence limits (LCL and UCL, respectively) for the
large-scale occupancy (ψ), small-scale occupancy (θ), and
detection (p) of the Lesser Prairie-Chicken (Tympanuchus
pallidicinctus) from the best and second best models (Table 4),
range-wide monitoring program, 2012–2016
 

Best model Second best model

Parameter Estimate LCL UCL Estimate LCL UCL

ψ(Intercept) -2.469 -3.121 -1.818 -2.465 -3.119 -1.812
ψ(CRP) 12.764 8.927 16.601 12.920 9.058 16.782
ψ(GrassPatch) 5.906 2.673 9.138 5.933 2.679 9.188
ψ(Shrub) 3.176 1.331 5.021 3.085 1.281 4.890
θ(Intercept) -3.427 -4.271 -2.583 -3.396 -4.211 -2.582
θ(CRP) 10.495 6.908 14.082 9.806 6.555 13.057
θ(Grass) 4.057 2.618 5.495 3.926 2.547 5.306
θ(Shrub) 4.819 3.202 6.435 5.047 3.371 6.722
θ(MGPR) 0.109 -1.339 1.558 0.179 -1.275 1.632
θ(SSPR) -1.148 -2.589 0.294 -1.389 -2.839 0.062
θ(SOPR) 0.025 -1.149 1.198 0.128 -1.065 1.321
θ(CRP * MGPR) -6.315 -11.593 -1.037 -5.488 -10.626 -0.349
θ(CRP * SSPR) -5.214 -9.944 -0.485 -4.280 -8.796 0.236
θ(CRP * SOPR) -9.651 -13.806 -5.495 -9.095 -13.004 -5.185
θ(Grass * MGPR) -2.166 -4.238 -0.093 -2.047 -4.096 0.003
θ(Grass * SSPR) -3.089 -5.621 -0.556 -2.882 -5.392 -0.372
θ(Grass * SOPR) -4.197 -6.195 -2.198 -4.015 -6.007 -2.023
p(Intercept) -0.873 -1.386 -0.361 -2.978 -5.193 -0.764
p(Time) 0.312 0.015 0.608
p(Back-seat
Observer)

1.017 0.736 1.298 1.009 0.730 1.288

p(Trend) 0.118 -0.007 0.243 0.211 0.071 0.351
p(MGPR) -0.739 -1.315 -0.163
p(SSPR) 0.428 -0.300 1.156
p(SOPR) -0.622 -1.229 -0.016
p(Date) 0.024 0.003 0.045

effect of Woodland-10 [w+(j) = 0.89] was 11 times more likely than
that Woodland-5 [w+(j) = 0.08], and 220 times more likely than
that with Woodland-1 [w+(j) < 0.01], and ψdeclined with
increasing Woodland-10 (Fig. 6). The cumulative AICc weights
indicated the effect of Development on θ had an 88% probability
of being selected in the top model. The effect of Road [w+(j) =
0.07] was 3 times more probable than Well [w+(j) = 0.02], 74 times
more probable than Vertical [w+(j) < 0.01], and 135 times more
probable than Transmission [w+(j) < 0.01], and θ declined with
increasing Development (90% CIs ≠ 0, Fig. 7, Table 7). The highest
ranking model from Hagen et al. (2016) showed much less support
than the highest ranking range-wide model (ΔAICc = 168). Beta
coefficients for the Grazing (β = 10.5; SE = 5.7; CI = 1.1, 20.0)
and NativeHabitatPatch (β = 3.4; SE = 1.4; CI = 1.0, 5.7)
covariates demonstrated large and precise effect sizes. Odds ratios
indicated occupancy increased by 11% for every 1% increase in
the landcover of prescribed grazing (1.11), and 3% for every 100
ha increase in the mean patch size of native habitat (1.03).

Mapping the range-wide occupancy
distribution
We predicted range-wide covariate relationships for ψ and θ using
unconditional estimates of small-scale occupancy in 2016 (θ ij *
ψ i; Fig. 8). The model-based estimate of unconditional small-
scale occupancy for the 2016 sampling frame within the occupied

Fig. 5. The small-scale occupancy (θ) of the Lesser Prairie-
Chicken (Tympanuchus pallidicinctus) at 7.5 × 7.5-km
quadrants by the percentage (%) of grassland landcover (Grass)
in the (A) Shinnery Oak Prairie, (B) Sand Sagebrush Prairie,
(C) Mixed Grass Prairie, and (D) Shortgrass CRP/Mosaic
Prairie from the range-wide monitoring program, 2012–2016.
The bold trend lines are model averaged estimates of small-
scale occupancy for models containing the main effect and
quadratic effect of grassland at the mean values of other
covariates in the model and the bounding lines are 90% CIs.

Fig. 6. The large-scale occupancy (ψ) of the Lesser Prairie-
Chicken (Tympanuchus pallidicinctus) at 15 × 15-km grid cells
by the percentage (%) of woodland landcover with greater than
10% canopy cover (Woodland-10) from the range-wide
monitoring program, 2012–2016. The bold trend lines are
model averaged estimates of large-scale occupancy at the mean
values of other covariates in the model and the bounding lines
are 90% CIs

ψi
θij *
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Table 6. Exploratory model selection for the large-scale occupancy (ψ), small-scale occupancy (θ), and detection (p) of the Lesser
Prairie-Chicken (Tympanuchus pallidicinctus) from the range-wide monitoring program, 2012–2016. The model-selection metrics are
the value of the minimized -2 log-likelihood function -2loge(L)], parameter number (K), Akaike’s Information Criterion adjusted for
sample size (AICc), difference between model and minimum AICc value (ΔAICc) and AICc weight (wi). Models with ΔAICc < 4 are shown.
 
Model† K -2log(L) AIC

c
ΔAIC

c
w

i

ψ(Woodland10) θ(Grass*Ecoregion + Development) p(Ecoregion + Date + Observer + Trend) 26 2434.90 2487.92 0.00 0.160
ψ(Woodland10) θ(Grass*Ecoregion + Development) p(Time + Observer + Trend) 23 2441.31 2488.11 0.19 0.145
ψ(Woodland10) θ(Grass*Ecoregion + Development) p(Time + Observer) 22 2443.48 2488.21 0.29 0.138
ψ(Woodland10) θ(Grass*Ecoregion + Development) p(Date + Time + Observer + Trend) 24 2440.28 2489.15 1.23 0.087
ψ(Woodland10) θ(Grass*Ecoregion + Development) p(Ecoregion + Time + Observer + Trend) 26 2436.17 2489.19 1.27 0.085
ψ(Woodland10) θ(Grass*Ecoregion + Development) p(Observer + Trend) 22 2444.46 2489.20 1.28 0.084
ψ(Woodland10) θ(Grass*Ecoregion + Development) p(Ecoregion + Observer + Trend) 25 2438.78 2489.72 1.80 0.065
ψ(Woodland5) θ(Grass*Ecoregion + Development) p(Ecoregion + Date + Observer + Trend) 26 2439.82 2492.84 4.92 0.014
†All models include ψ(CRP + GrassPatch + Shrub) and θ(CRP + Grass + Shrub + Ecoregion + CRP*Ecoregion).

Fig. 7. The small-scale occupancy (θ) of the Lesser Prairie-
Chicken (Tympanuchus pallidicinctus) at 7.5 × 7.5-km
quadrants by the percentage (%) of development landcover
(Development) in the (A) Shinnery Oak Prairie, (B) Sand
Sagebrush Prairie, (C) Mixed Grass Prairie, and (D) Shortgrass
CRP/Mosaic Prairie from the range-wide monitoring program,
2012–2016. The bold trend lines are model averaged estimates
of small-scale occupancy for models containing the effect of
development at the mean values of other covariates in the
model and the bounding lines are 90% CIs.

range was 0.073 (CI = 0.057, 0.091). Estimates of mean
unconditional small-scale occupancy by ecoregion were 0.049 (CI
= 0.047, 0.052) for the SOPR, 0.031 (CI = 0.029, 0.033) for the
SSPR, 0.073 (CI = 0.071, 0.076) for the MGPR, and 0.123 (CI =
0.121, 0.126) for the SGPR (Fig. 8). The overall model-based
estimate of area occupied within the estimated occupied range of
LEPC was 7953 km² (CI = 7847, 8059). The area occupied by
ecoregion was SOPR = 1370 km² (CI = 1309, 1432), SSPR = 490
km² (CI = 463, 517), MGPR = 2576 km² (CI = 2516, 2636), and
SGPR = 3517 km² (CI = 3461, 3574).

Table 7. Parameter estimates, standard errors (SE), and lower and
upper 90% confidence limits (LCL and UCL, respectively) for the
large-scale occupancy (ψ), small-scale occupancy (θ), and
detection (p) of the Lesser Prairie-Chicken (Tympanuchus
pallidicinctus) from the best exploratory model, range-wide
monitoring program, 2012–2016.
 
Parameter Estimate SE LCL UCL

ψ(intercept) -1.885 0.399 -2.542 -1.229
ψ(CRP) 11.285 2.461 7.237 15.333
ψ(GrassPatch) 4.103 1.644 1.398 6.808
ψ(Shrub) 3.323 1.109 1.498 5.148
ψ(Woodland10) -14.263 3.668 -20.297 -8.228
θ(intercept) -2.646 0.543 -3.540 -1.753
θ(CRP) 8.907 2.004 5.609 12.205
θ(Grass) 3.635 0.824 2.279 4.991
θ(Shrub) 4.002 1.017 2.329 5.676
θ(MGPR) 0.500 0.885 -0.956 1.957
θ(SSPR) -1.071 0.877 -2.515 0.372
θ(SOPR) 1.395 0.780 0.111 2.680
θ(Development) -25.059 6.591 -35.901 -14.217
θ(CRP *MGPR) -4.960 3.135 -10.117 0.198
θ(CRP *SSPR) -4.338 2.762 -8.882 0.207
θ(CRP * SOPR) -10.347 2.458 -14.392 -6.302
θ(Grass*MGPR) -2.015 1.238 -4.051 0.022
θ(Grass* SSPR) -3.144 1.488 -5.593 -0.696
θ(Grass* SOPR) -5.973 1.287 -8.091 -3.855
p(intercept) -2.988 1.334 -5.183 -0.793
p(MGPR) -0.728 0.347 -1.300 -0.157
p(SSPR) 0.425 0.444 -0.37 1.157
p(SOPR) -0.697 0.380 -1.321 -0.072
p(Date) 0.025 0.012 0.004 0.045
p(back-seat Observer) 1.001 0.169 0.723 1.280
p(Trend) 0.206 0.084 0.067 0.345

Simulated effect of changes to CRP-enrolled
land
The amount of land enrolled in CRP varied across the Southern
Great Plains, and the SSPR and SOPR had the highest average
percentage (Table 8). However, the relationship between CRP and
LEPC occupancy was most pronounced in the SGPR (Figs. 3, 9).
In this ecoregion, the models predicted that a 5% increase in CRP
relative to 2016 (an additional 114 km² enrolled) would result in an
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Fig. 8. Model-averaged predictions of unconditional small-scale
occupancy probability (ψ*θ) for the Lesser Prairie-Chicken
(Tympanuchus pallidicinctus) at 7.5-km × 7.5-km quadrants.
Black polygons represent the occupied range of the LEPC plus a
16-km buffer, divided into four ecoregions used in conservation
planning (SGPR = Shortgrass/CRP Mosaic, SSPR = Sand
Sagebrush Prairie, MGPR = Mixed Grass Prairie, SOPR =
Shinnery Oak Prairie).

additional 228 km² (90% CI = 147 - 310 km²) of LEPC occupied
area, i.e., 6.1% increase. Changes in CRP had less-pronounced
effects in the remaining ecoregions (Figs. 3, 9). We estimated that
the most CRP-liberal scenario (20% more CRP than 2016), would
increase LEPC occupied area range-wide by 1581 km² (90% CI =
1418–1744 km²), i.e., a 16.6% increase. The gains in occupied area
under this most CRP-liberal scenario were predicted to be within
the SGPR (952 km², 90% CI = 864–1039 km²), followed by the
MGPR (375 km², 90% CI = 282–468 km²), SSPR (157 km², 90%
CI = 110–205 km²), and SOPR (97 km², 90% CI = 7–187 km²)
ecoregions (Fig. 9). Increases in CRP associated with this most
CRP-liberal scenario was predicted to increase occupancy
probabilities range-wide; however, predicted gains in occupancy
were most pronounced in portions of west-central Kansas (Fig. 9).

Table 8. Summary statistics of baseline Conservation Reserve
Program (CRP) enrollment in the four ecoregions of the study
area in 2016 in estimating Lesser Prairie-Chicken (Tympanuchus
pallidicinctus) occupancy.
 
Ecoregion Mean (SD) area

(%) CRP per grid
cell

Area of
CRP (km²)

Area equivalent of
5% CRP (km²)

Shinnery Oak
Prairie

12.0 (13.4) 3310 165

Sand Sagebrush
Prairie

13.0 (7.7) 2077 104

Mixed Grass
Prairie

6.1 (5.3) 2123 106

Shortgrass/CRP
Mosaic

8.0 (4.9) 2279 114

Fig. 9. Predicted change in the area occupied by Lesser Prairie-
Chicken (Tympanuchus pallidicinctus) within each ecoregion
assuming changes to the amount of land enrolled in the
Conservation Reserve Program (CRP). Changes to the amount
of CRP are relative to 2016 levels of CRP enrollment. Changes
in the unconditional probability of small-scale occupancy (ψ*θ)
under the most CRP-liberal scenario (20% more CRP
enrollment than in 2016) are represented in the map. Black
polygons represent the occupied range of the LEPC plus a 16-
km buffer, divided into four ecoregions used in conservation
planning.

DISCUSSION
Our work provided a multiscaled portrait of biotic and abiotic
factors that explained occupancy rates of LEPC across their entire
distribution. It revealed conditions necessary for a landscape to
be suitable for occupancy and conditions therein suitable for
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occupancy at local scales. Our results were surprising in the sense
that occupancy was insensitive to large-scale weather patterns and
exhibited little annual variation for the duration of our study.
However, we were able to identify important thresholds of
landscape composition linked to occupancy at both scales. We
found landcover of CRP, Grass, and Shrub influenced second-
order habitat use (Johnson 1980) at both spatial scales, but the
effect of grassland fragmentation operated at the large scale, with
greater variation among ecoregions at the small scale. Covariate
relationships may be useful for informing conservation practices
at different spatial scales and for identifying habitat factors that
influence species distributions (Hagen et al. 2016, Pavlacky et al.
2017). These findings highlight potential benefits to LEPC of
restoring prairie landscapes through CRP or other conservation
programs that convert tilled agricultural land back to grassland.
Additionally, our findings elucidate the importance of landscape
scale management, e.g., tree removal and mitigation of
development, to increase the likelihood of occupancy.

Annual variation in site occupancy
The pattern of implicit dynamics suggested that the geographic
range of LEPC, as estimated by the probability of occupancy,
remained stable at the large scale but fluctuated temporally at the
small scale. Stable range dynamics at the large scale with
fluctuating range dynamics at the small scale may be expected
because site occupancy exhibits greater correlation with
abundance at smaller spatial scales (Noon et al. 2012). We found
little evidence of annual variation in large-scale occupancy (ψ) of
LEPC between 2012 and 2016, but discovered moderate evidence
for annual variation in the probability of small-scale occupancy
(θ; Fig. 1). However, range contraction and expansion oscillated
temporally in θ, with a 27% contraction between 2012 and 2013
(λ = 0.73; 90% CI = 0.53, 1.01) and a 49% expansion between
2013 and 2015 (λ = 1.49; 90% CI = 1.21, 1.82), and marginal
temporal changes between other years (Fig. 1). Best models for
annual variation in θ included the additive effect of ecoregion,
suggesting θ was greater in the SGPR ecoregion than in others,
but with the same pattern of dynamics among all ecoregions (Fig.
1). Annual estimates of θ in the SGPR and MGPR regions
paralleled regional abundance estimates, but θ for the SOPR and
SSPR regions did not (McDonald et al. 2016). Nevertheless,
observed annual variation in site occupancy was relatively small
compared to landscape effects observed in the range-wide
covariate analysis.

Multiscale covariate relationships
Overall, we found strong support for hypotheses that LEPC
occupancy was correlated with landscape composition and
configuration, and conservation programs involving CRP at both
spatial scales. We found some support for hypotheses that LEPC
occupancy was correlated with Development at the small scale,
and the effect was several orders of magnitude greater than at the
large scale. The exploratory analysis showed a strong negative
effect of Development with trivial probabilities of θ when
landscapes contained > 10% of this landcover. Our results did
not support hypotheses for shifts in extent of occurrence in
response to drought-related covariates. These patterns are
commensurate with other work, which has demonstrated
reductions in abundance as it related to drought but site
occupancy was largely unchanged especially at these spatial scales

(Ross et al. 2016a, Fritts et al. 2018). Therefore, management of
landscape mosaics (Haukos and Zavaletta 2016) may be more
influential than drought-related climatic patterns (Grisham et al.
2016) at both spatial scales.  

Lack of drought-related effects may not be surprising, given we
observed low annual variation in ψ, and only moderate annual
variation in θ. Although interactive models of landcover and
drought were not well supported, overall, occupancy shifted from
CRP to Shrub during drought conditions. This pattern was
contradictory to regional variation, i.e., SGPR, in CRP use by
radiomarked LEPCs during drought (Sullins et al. 2018).
However, the general importance of CRP to occupancy was
evident but we were unable to detect strong relationships with
drought. LEPC abundance was correlated with lagged climatic
effects (Ross et al. 2016a, b), and we expected that LEPC
abundance may have been more sensitive to climatic conditions
than occupancy.  

Landscape composition and configuration, and conservation
efforts were the most important predictors of ψ when modeling
pooled data over all ecoregions. However, we found little support
for relative effects of anthropogenic disturbance or drought-
related patterns at this scale. It is possible that our modeling was
unable to detect correlations between occupancy and
Development because of the legacy effects of habitat conversion
that occurred decades prior to our work. Such large-scale
conversion may have previously displaced local populations and
those areas may have been excluded from our sampling frame.
Shrub, GrassPatch, and CRP were the most important correlates
of ψ in these pooled data for the range-wide analysis. This
confirms previous assertions that landscape-level habitat loss and
fragmentation are among the most important factors for long-
term population persistence of LEPC (Haukos and Zavaletta
2016). The most suitable landcover mosaics within 225 km²
landscapes were composed of average grassland patches > 19 ha
embedded in a matrix with Shrub > 22% or CRP > 12%. These
landscape relationships were more important than patch sizes of
GeneralHabitat or NativeHabitat, suggesting that CRP did not
contribute to the patch sizes of native habitat. Because such a
large proportion of grassland patches were small (75% of
grassland patches ≤ 30 ha; 90% ≤ 66 ha), mean patch size may not
reflect the most likely landscape metric of interest when evaluating
LEPC habitat, however it appears to provide an adequate measure
of fragmentation (Spencer et al. 2017).  

This mosaic pattern of landscape configuration and composition
suggested that habitat fragmentation was a more important
determinant for LEPC presence in Grass, whereas total area of
habitat, regardless of fragmentation, was more important in CRP.
Because patch size was more important than landcover for Grass,
landscape management to maintain large patches of grassland
may be an important conservation strategy in modified
agricultural landscapes (Kareiva and Wennergen 1995). In
contrast, the effects of CRP on ψ suggested CRP functioned
primarily as between-patch matrix habitat and did not contribute
to the patch sizes of grassland vegetation. Landscape
management to implement CRP and maintain high landcover of
sand sagebrush and shinnery oak shrubland may be important
conservation strategies, and losses of these habitat types in any
configuration is expected to reduce ψ. We speculate that the
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amount of CRP or Shrub may increase landscape permeability
and facilitate LEPC dispersal between patches of native grassland
(Ricketts 2001, Niemuth 2011).  

Models with CRP consistently outperformed those containing
LPCI-prescribed grazing on large-scale occupancy. However, we
observed large additive effects of prescribed grazing and patch
size of native vegetation on ψ in less supported models with
predicted increases (11%) in occupancy as the proportion of
prescribed grazing increased (1% of landcover enrolled), although
these were ~50% less than previously observed (Hagen et al. 2016).
Because of close connections between habit loss and local
extinction, landscape management of CRP may have greater
potential to increase the extent of occurrence in agricultural
landscapes, compared to prescribed grazing to address habitat
degradation in remnants. However, because habitat degradation
is expected to become increasingly important above a threshold
of available habitat (Fischer and Lindenmayer 2007), future
research to investigate the role of prescribed grazing along
gradients of landscape composition may provide important
insights. Hagen et al. (2016) predicted the effect of prescribed
grazing would operate at the small-scale, and it is possible that
the effects of grazing management operate on third-order habitat
use, i.e., use within an organisms home-range, rather than second-
order habitat use, i.e., home ranges selected within geographic
distribution, at the landscape scale (Haukos and Zavaletta 2016).
Lesser Prairie-Chicken third-order space use has been empirically
linked and positively correlated with LPCI-prescribed grazing
plans, and threshold effects have been demonstrated for stocking
density and patch-burn frequency (Lautenbach 2017, Kraft et al.
2020). However, the sparseness of our data may have reduced the
ability to detect these effects a priori among the large suite of
covariates (n = 31) especially those that affect connectivity and
fragmentation (Hagen et al. 2016).  

Landscape composition and conservation efforts were the most
important predictors of θ in these pooled data. There were
ecoregional interactions with CRP, Shrub, and Grass when data
were pooled across ecoregions. The odds ratios indicated that θ 
increased by 11%, 5%, 5%, and 0.8% for every 1% increase in of
the amount of CRP in the SGPR, MGPR, SSPR, and SOPR,
respectively (Fig. 4). The interaction between ecoregion and CRP,
suggested the landscape management of CRP in 56.25 km²
landscapes will be most effective in the SGPR, moderately
effective in the MGPR and SSPR, and least effective in the SOPR.
The positive and additive effects of Shrub were parallel, and the
odds of θ increased by 5% for every 1% increase in Shrub (Fig.
5), in the SOPR. In the SGPR, θ exceeded the inflection point of
the logistic relationship when Grass was > 58%. The odds ratio
indicated that θ increased by 2% for every 1% increase of Grass
in the MGPR. The interaction effects suggest that managing for
greater grassland landcover may be less important in the SOPR
and SSPR than in the SGPR and MGPR. This finding may not
be surprising because sand sagebrush and sand shinnery oak are
codominant with grasses in SSPR and SOPR, respectively, and
these shrubs are crucial to long-term resilience of vegetation
communities in these more drought susceptible ecoregions
(Hagen and Elmore 2016). Large-scale loss of shrub landcover to
grass has not been conducive to LEPCs in these regions (Haukos
and Zavaleta 2016). The small effect of Grass on small-scale
occupancy suggested the amount of grassland habitat at the local

scale was not a limiting factor in the SOPR and SSPR, and the
large effect of Shrub suggested a greater reliance on shrubland
habitat in these regions.

Exploratory model selection
Our a priori model selection indicated that large patches of native
grassland, CRP, and shrubland cover were associated with large-
scale occupancy. Exploring additional covariates suggested that
tree cover was also highly associated with LEPC occupancy at the
large scale, likely influencing distributional limits. In our post-hoc
exploratory analyses of ψ, we discovered that occupancy
decreased 13% for every 1% increase in Woodland-10. This
confirms the findings of field studies of LEPC space use and
movement where individual birds exhibited strong avoidance to
tall woody cover (Boggie et al. 2017, Lautenbach et al. 2017).
These field studies focused on space use relative to honey mesquite
(Prosopris glandulosa) and eastern red cedar (Juniperus virginiana)
in the SOPR and MGPR, respectively. Interestingly, our finding
that occupancy was negatively correlated with the presence of
relatively low levels (< 5 and < 10%) of woodland cover was
commensurate with fine-scale avoidance of other prairie-grouse
(McNew et al. 2012, Severson et al. 2017). At broader scales the
increase in woodland cover has been linked to declines in lek
attendance of LEPC and other prairie-grouse species (Fuhlendorf
et al. 2002, McNew et al. 2012, Baruch-Mordo et al. 2013, Hagen
et al. 2019). Thus, while increasing available prairie can be
achieved through CRP (or other surrogate grassland restoration)
tree removal may offer additional avenues for restoration
(Fuhlendorf et al. 2002, Hagen et al. 2019).  

In our post-hoc exploratory analyses of θ, we found limited
evidence that Development was negatively influencing LEPC
occupancy and it varied regionally. The larger absolute effects
were observed in the SGPR and MGPR, but in either case with
every 1% (0.56 km²) increase in Development the odds of
occupancy decreased by 22%. Various studies have examined
space use and movements of individual LEPCs (Pitman et al.
2005, Pruett et al. 2009, Hagen et al. 2011, Plumb et al. 2018), but
ours is the first to rigorously estimate occupancy as a function of
human development at broad scales. Growing evidence suggests
that individuals tend to exhibit a tolerance threshold measured
in minimum distances, and that may translate to reduced
occupancy as the proportion of the landscape is occupied by
human developments (Bartuszevige and Daniels 2016).

Simulated effect of changes to CRP-enrolled
land
Given the positive relationships found between LEPC occupancy
and amounts of land enrolled in CRP, we described the effects of
changes in CRP were expected to have on occupied area of LEPC
across their range. LEPC occupancy was most sensitive to changes
in CRP levels in the SGPR. Disproportionately large gains in
occupancy associated with increases in CRP enrollment in the
SGPR were exemplified in the CRP-occupancy relationship for
ψ and θ (Figs. 3C, 4D). In both cases, when CRP was rare on the
landscape (approximately 0–15% coverage), as little as 5–10%
additional percent coverage of CRP was estimated to produce an
approximate doubling in the probability of occupancy in the
ecoregion. This strong relationship between occupancy and CRP
may be partially explained by the relative scarcity of CRP in this
ecoregion (Table 8).  
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We caution that the distribution of LEPC at the range-wide scale
may be constrained by factors that we did not consider. In
particular, this analysis assumes that changes in the probability
of occupancy translate directly to changes in the area occupied
by LEPC, with no assumed barriers to dispersal and colonization
of previously unoccupied areas. We also made the simplifying
assumptions that CRP expansion could only occur within
quadrants where some CRP was already present and that changes
in CRP enrollment did not affect the values of other
environmental covariates also used as predictor variables in the
occupancy models. A spatially explicit simulation could be
conceived to add (or remove) CRP according to some process
(random or supervised) and modify the values of other
environmental covariates where CRP was added (or removed).
Despite these assumptions, our results suggested that higher levels
of CRP enrollment would expand LEPC occupied area and
illustrated potential impacts that conservation policies have on
the distribution of a species of high conservation concern.  

Our work confirms prior assertions that broad-scale habitat loss
and fragmentation are primary factors eroding the long-term
population persistence of LEPC (Van Pelt et al. 2013). Although
threats to functional prairie ecosystems persist through loss and
degradation of habitat, our work provides insights that may prove
useful in maintaining, improving, or restoring these systems
through conservation actions taken on private lands. Notably,
CRP appears to serve as a surrogate for prairie habitat in some
ecoregions, especially in conjunction with larger extant patches
of native habitat. These findings support previous research
demonstrating the long-term effectiveness of CRP as a tool to
reduce grassland habitat fragmentation at landscape scales
(Spencer et al. 2017). The results suggest managers may be able
to increase the current distribution of LEPC through increasing
the amount of available grasslands. If  CRP is combined with
strategies to stem the tide of woody encroachment, it should yield
increases in patch size and usable space for LEPCs. Similarly,
targeted approaches to siting of energy developments and
restoration of abandoned sites could prove useful in shifting the
distribution of LEPCs.

Responses to this article can be read online at: 
http://www.ace-eco.org/issues/responses.php/1672
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Appendix 1. Supplementary materials. 

 
Fig. A1.1. Study area map showing 15-km × 15-km grid cells surveyed for lesser prairie-chickens, 

2016. The colored areas surrounding each ecoregion indicate an approximate 77.7-km (30-mi) 

buffer into which the survey may be expanded in the future. 



 

Fig. A1.2. Coefficient of variation (CV) of model-averaged predictions of unconditional small-

scale occupancy probability (ψ*θ) for the lesser prairie-chicken at 7.5-km × 7.5-km quadrants. 

Black polygons represent the occupied range of the LEPC plus a 16-km buffer, divided into four 

ecoregions used in conservation planning (SGPR = Shortgrass/CRP Mosaic, SSPR = Sand 

Sagebrush Prairie, MGPR = Mixed Grass Prairie, SOPR = Shinnery Oak Prairie).



Table A1.1. Model selection for the large-scale occupancy (ψ), small-scale occupancy (θ), and detection (p) of the lesser prairie-

chicken from the range-wide monitoring program, 2012–2016. The model-selection metrics are the value of the minimized −2 log-

likelihood function [−2loge(ℒ)], parameter number (K), Akaike’s Information Criterion adjusted for sample size (AICc), difference 

between model and minimum AICc value (a) and AICc weight (wi). Models with ΔAICc < 4 are shown. 

 
Model K -2log(ℒ) AICc ΔAICc wi 

ψ(.) θ(Ecoregion) p(Date + Observer + Ecoregion + Trend) 12 2651.69 2675.91 0.00 0.075 

ψ(.) θ(Ecoregion) p(Observer + Time + Trend) 9 2657.88 2676.01 0.10 0.071 

ψ(.) θ(Ecoregion) p(Date + Observer + Ecoregion + Time + Trend) 13 2649.87 2676.14 0.23 0.067 

ψ(.) θ(Ecoregion) p(Observer + Trend) 8 2660.30 2676.40 0.49 0.058 

ψ(.) θ(Ecoregion) p(Date + Observer + Time + Trend) 10 2656.42 2676.57 0.66 0.054 

ψ(.) θ(Ecoregion) p(Observer + Time) 8 2660.69 2676.79 0.88 0.048 

ψ(.) θ(Ecoregion) p(Date + Observer + Trend) 9 2658.92 2677.05 1.14 0.042 

ψ(.) θ(Ecoregion) p(Observer + Ecoregion + Trend) 11 2655.67 2677.86 1.95 0.028 

ψ(.) θ(Ecoregion + Year) p(Observer + Time + Trend) 13 2651.70 2677.96 2.05 0.027 

ψ(.) θ(Ecoregion) p(Observer) 7 2663.96 2678.04 2.13 0.026 

ψ(.) θ(Ecoregion) p(Observer + Ecoregion + Time + Trend) 12 2653.85 2678.08 2.17 0.025 

ψ(.) θ(Ecoregion + Year) p(Observer + Time) 12 2653.91 2678.14 2.23 0.024 

ψ(.) θ(Ecoregion) p(Date + Observer + Time) 9 2660.32 2678.45 2.54 0.021 

ψ(.) θ(Ecoregion + Year) p(Observer + Trend) 12 2654.39 2678.61 2.70 0.019 

ψ(.) θ(Ecoregion + Year) p(Date + Observer + Ecoregion + Time + Trend) 17 2644.43 2678.87 2.96 0.017 

ψ(.) θ(Ecoregion + Year) p(Date + Observer + Time + Trend) 14 2650.60 2678.91 3.00 0.017 

ψ(.) θ(Ecoregion + Year) p(Date + Observer + Ecoregion + Trend) 16 2646.59 2678.98 3.08 0.016 

ψ(.) θ(Ecoregion) p(Observer + Ecoregion + Time) 11 2656.95 2679.14 3.23 0.015 

ψ(.) θ(Ecoregion) p(Observer + Ecoregion) 10 2659.52 2679.68 3.77 0.011 

ψ(.) θ(Ecoregion + Year) p(Date + Observer + Trend) 13 2653.43 2679.69 3.78 0.011 

ψ(.) θ(Ecoregion + Year) p(Date + Observer + Time) 13 2653.52 2679.78 3.87 0.011 

ψ(.) θ(Ecoregion + Year) p(Observer) 11 2657.62 2679.81 3.90 0.011 

ψ(.) θ(Ecoregion) p(Date + Observer + Ecoregion + Time) 12 2655.63 2679.85 3.94 0.010 

ψ(.) θ(Ecoregion) p(Date + Observer) 8 2663.75 2679.85 3.94 0.010 

 



 

Table A1.2. Parameter estimates, Standard Errors (SE), and Lower and Upper 90% Confidence 

Limits (LCL and UCL, respectively) for the detection (p) of the lesser prairie-chicken from the 

best and second best model and range-wide monitoring program, 2012–2016. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A1.3. Plausible combinations model selection for large-scale occupancy (ψ) of the lesser 

prairie-chicken from the range-wide monitoring program, 2012–2016. The model-selection 

metrics are the value of the minimized -2 log-likelihood function -2loge(ℒ)], parameter number 

(K), Akaike’s Information Criterion adjusted for sample size (AICc), difference between model 

and minimum AICc value (ΔAICc) and AICc weight (wi). High-weight submodels with wi < 

0.001 and high likelihood submodels with -2log(ℒ) < maximum -2log(ℒ) of high weight models 

are shown. 

 

Model a K -2log(L) AICc ΔAICc wi 

ψ(CRP + GrassPatch + Shrub) 17 2545.03 2579.48 0.00 0.697 

ψ(CRP + CRP2 + GrassPatch + Shrub) 18 2544.67 2581.17 1.69 0.299 

 

  

Model 

Parameter 

 

Estimate 

 

SE 

 

LCL 

 

UCL 

Model 1     

p(intercept) -3.185 1.393 -5.476 -0.893 

p(MGPR) -0.648 0.330 -1.191 -0.105 

p(SSPR) 0.445 0.452 -0.299 1.189 

p(SOPR) -0.549 0.363 -1.146 0.048 

p(Date) 0.026 0.013 0.004 0.048 

p(Observer) 1.017 0.170 0.737 1.298 

p(Trend) 0.221 0.085 0.080 0.361 

Model 2     

p(intercept) -0.871 0.315 -1.390 -0.352 

p(Time) 0.288 0.185 -0.017 0.593 

p(Observer) 1.027 0.171 0.745 1.309 

p(Trend) 0.129 0.077 0.002 0.257 



Table A1.4. Plausible combinations model selection for small-scale occupancy (θ) of the lesser 

prairie-chicken from the range-wide monitoring program, 2012–2016. The model-selection 

metrics are the value of the minimized -2 log-likelihood function -2loge(ℒ)], parameter number 

(K), Akaike’s Information Criterion adjusted for sample size (AICc), difference between model 

and minimum AICc value (ΔAICc) and AICc weight (wi). High-weight submodels with wi < 

0.001 and high-likelihood submodels with -2log(ℒ) < maximum -2log(ℒ) of high weight models 

are shown. 

 

Model a K -2log(ℒ) AICc ΔAICc wi 

θ(CRP + Grass + Grass2 + Shrub + Ecoregion + 

Ecoregion*CRP + Ecoregion*Grass2) 
28 2494.53 2551.71 0.00 0.803 

θ(CRP + Grass + Shrub + Ecoregion + 

Ecoregion*CRP + Ecoregion*Grass) 
27 2500.13 2555.23 3.52 0.138 

θ(CRP + Grass + Grass2 + Shrub + Ecoregion + 

Ecoregion*CRP + Ecoregion*Grass) 
28 2500.13 2557.31 5.60 0.049 

a All models include p(Ecoregion + Year + Observer) and ψ(Year). 

 

  



Table A1.5. Plausible combinations model selection for detection (p) of the lesser prairie-

chicken from the range-wide monitoring program, 2012–2016. The model-selection metrics are 

the value of the minimized -2 log-likelihood function -2loge(ℒ)], parameter number (K), 

Akaike’s Information Criterion adjusted for sample size (AICc), difference between model and 

minimum AICc value (ΔAICc) and AICc weight (wi). High-weight submodels with wi < 0.001 

and high likelihood submodels with -2log(ℒ) < maximum -2log(ℒ) of high weight models are 

shown. 

 

Model a K -2log(ℒ) AICc ΔAICc wi 

p(Time + Observer + Trend) 13 2654.00 2680.26 0.00 0.140 

p(Observer + Trend) 12 2656.36 2680.59 0.33 0.119 

p(Time + Observer) 12 2656.69 2680.91 0.65 0.101 

p(Ecoregion + Date + Observer + Trend) 16 2648.70 2681.10 0.84 0.092 

p(Date + Time + Observer + Trend) 14 2652.98 2681.29 1.03 0.084 

p(Date + Observer + Trend) 13 2655.46 2681.72 1.46 0.068 

p(Ecoregion + Observer + Trend) 15 2651.69 2682.03 1.77 0.058 

p(Observer) 11 2660.06 2682.25 1.99 0.052 

p(Ecoregion + Time + Observer + Trend) 16 2649.94 2682.33 2.07 0.050 

p(Date + Time + Observer) 13 2656.44 2682.71 2.45 0.041 

p(Ecoregion + Time + Observer) 15 2652.94 2683.28 3.02 0.031 

p(Ecoregion + Observer) 14 2655.61 2683.92 3.66 0.023 

p(Year + Ecoregion + Date + Observer) 19 2645.61 2684.16 3.90 0.020 

p(Date + Observer) 12 2659.95 2684.18 3.92 0.020 

p(Ecoregion + Date + Time + Observer) 16 2651.91 2684.30 4.05 0.019 

p(Year + Time + Observer) 16 2651.92 2684.31 4.06 0.018 

p(Year + Observer) 15 2654.19 2684.54 4.28 0.016 

p(Year + Date + Time + Observer) 17 2650.55 2684.99 4.73 0.013 

p(Ecoregion + Date + Observer) 15 2654.83 2685.18 4.92 0.012 

p(Year + Date + Observer) 16 2653.13 2685.52 5.27 0.010 
a All models include θ(Ecoregion) and ψ(Year). 

 



Appendix 2. Table S1 Means, standard deviation, minimum and maximum values for covariates modeled to predict occupancy of
lesser prairie-chickens at large (psi) and small scale (theta), and detection probability (p).

Please click here to download file ‘appendix2.xlsx’.

http://www.ace-eco.org/1672/appendix2.xlsx
http://www.ace-eco.org/1672/appendix2.xlsx
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