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ABSTRACT. An important metric for many aspects of species conservation planning and risk assessment is an estimate of total
population size. For landbirds breeding in North America, Partners in Flight (PIF) generates global, continental, and regional
population size estimates. These estimates are an important component of the PIF species assessment process, but have also been
used by others for a range of applications. The PIF population size estimates are primarily calculated using a formula designed to
extrapolate bird counts recorded by the North American Breeding Bird Survey (BBS) to regional population estimates. The
extrapolation formula includes multiple assumptions and sources of uncertainty, but there were previously no attempts to quantify
this uncertainty in the published population size estimates aside from a categorical data quality score. Using a Monte Carlo approach,
we propagated the main sources of uncertainty arising from individual components of the model through to the final estimation of
landbird population sizes. This approach results in distributions of population size estimates rather than point estimates. We found
the width of uncertainty of population size estimates to be generally narrower than the order-of-magnitude distances between the
population size score categories PIF uses in the species assessment process, suggesting confidence in the categorical ranking used by
PIF. Our approach provides a means to identify species whose uncertainty bounds span more than one categorical rank, which was
not previously possible with the data quality scores. Although there is still room for additional improvements to the estimation of
avian population sizes and uncertainty, particularly with respect to replacing categorical model components with empirical estimates,
our estimates of population size distributions have broader utility to a range of conservation planning and risk assessment activities
relying on avian population size estimates.

Estimation de l'incertitude quant à la taille des populations d'oiseaux terrestres d'Amérique du Nord
RÉSUMÉ. Une mesure importante pour de nombreux aspects de la planification de la conservation des espèces et de l'évaluation
des risques est une estimation de la taille totale de la population. Pour les oiseaux terrestres se reproduisant en Amérique du Nord,
Partners in Flight (PIF) génère des estimations de la taille des populations mondiales, continentales et régionales. Ces estimations
constituent un élément important du processus d'évaluation des espèces du PIF, mais elles sont également utilisées par d'autres pour
diverses applications. Les estimations de la taille de la population calculées par PIF le sont à l'aide d'une formule conçue pour
extrapoler les dénombrements d'oiseaux enregistré par le Relevé des Oiseaux Nicheurs de l'Amérique du Nord (BBS) aux estimations
régionales de population. La formule d'extrapolation comprend de multiples hypothèses et sources d'incertitude, mais il n'y avait
auparavant aucune tentative de quantifier cette incertitude dans les estimations publiées de la taille des populations, à l'exception
d'un score catégorique de qualité des données. En utilisant une approche de Monte Carlo, nous avons propagé les principales sources
d'incertitude découlant des composantes individuelles du modèle jusqu'à l'estimation finale de la taille des populations d'oiseaux
terrestres. Cette approche donne lieu à des distributions d'estimations de la taille des populations plutôt qu'à des estimations
ponctuelles. Nous avons constaté que l'ampleur de l'incertitude des estimations de la taille des populations était généralement plus
étroite que les distances de l'ordre de grandeur entre les catégories de scores de taille des populations utilisées par PIF dans le processus
d'évaluation des espèces, ce qui suggère que le classement catégorique utilisé par PIF est fiable. Notre approche offre un moyen
d'identifier les espèces dont les limites d'incertitude couvrent plus d'un rang catégorique, ce qui n'était pas possible auparavant avec
les scores de qualité des données. Bien qu'il reste encore des améliorations à apporter à l'estimation de la taille et de l'incertitude des
populations aviaires, particulièrement en ce qui concerne le remplacement des composantes qualitatives des modèles par des
estimations empiriques, nos estimations de la répartition de la taille des populations sont utiles à une gamme d'activités plus large
de planification de la conservation et d'évaluation des risques qui reposent sur des estimations des populations aviaires.
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INTRODUCTION
The total population size of animal species is one of the
fundamental determining factors in extinction risk (McKinney
1997, Purvis et al. 2000) and, thus, is an important component of
species risk assessment programs (Carter et al. 2000, Faber-
Langendoen et al. 2012, IUCN 2012). As a general rule, the
smaller the population, the greater the risk of extirpation through
demographic stochasticity, environmental stochasticity, and
random catastrophic events (Lande 1993). In addition, estimates
of population size are important for assessing the impact of
different sources of anthropogenic mortality in North America
(Johnson et al. 2012, Longcore and Smith 2013, Longcore et al.
2013, Loss et al. 2013, 2014, Erickson et al. 2014). Given the
importance of population size in risk assessment, knowing the
uncertainty of those estimates is equally important. Uncertainty,
or the amount of variance inherent in the estimation process, can
arise from several sources (Regan et al. 2003), and failing to
account for uncertainty when conducting risk assessment can lead
to misclassification (Wilson et al. 2011).  

As part of the 2004 North American Landbird Conservation Plan
(Rich et al. 2004), Partners in Flight (PIF), a consortium of
scientific and other organizations focused on avian conservation
in North America (Finch and Stangel 1993), introduced an
approach for estimating population sizes (Rosenberg and
Blancher 2005). This approach resulted in the first published
global population size estimates for North American landbirds
(Rich et al. 2004). These estimates were used to refine an
important component of the PIF species assessment designed to
categorize and prioritize species by conservation need across the
continent (Hunter et al. 1993, Carter et al. 2000). Recognizing
that meeting conservation objectives at continental scales requires
regional planning and action, PIF also published a database of
population size estimates downscaled to several geographic scales,
such as Bird Conservation Regions (BCRs), states in the United
States, and provinces/territories in Canadian (Blancher et al. 2007,
2013, PIF 2013).  

In the PIF species assessment approach, global population size
estimates are expressed as categorical population size (PS) scores
(Panjabi et al. 2005, 2012, Rosenberg et al. 2017), with scoring
categories separated by orders of magnitude (Table 1). Therefore,
for PIF assessment purposes, it is assumed a high degree of
precision in population size estimates is not essential to accurately
assign a PS score. The current PIF population estimates (Blancher
et al. 2007) include a data quality rating to express the relative
confidence in the quality or quantity of data on which the
components of population estimate are based. However, these
data quality ratings do not include a measure of uncertainty
around the population size estimates, which would indicate
whether an estimate spans more than one PS category.  

PIF population size estimates are frequently used for purposes
beyond the PIF species assessment. They have aided in
establishing continental and regional species prioritization and
planning (Potter et al. 2007, Thogmartin et al. 2014, Rosenberg
et al. 2016); for those working in avian conservation, transforming
abstract concepts such as “index of abundance” into more
generally understandable “population size” estimates were found
to aid communication with policy makers and the public (Briggs
2006, Bickford et al. 2012). PIF population estimates are also

increasingly being used to assess the impacts of different sources
of anthropogenic avian mortality (Johnson et al. 2012, Longcore
et al. 2013, Erickson et al. 2014, Loss et al. 2014). Because of the
importance of population size estimation for assessing species
risk and mortality impacts, PIF has committed to improve and
revise the approach and, to the extent possible, address critiques
and suggestions that have been raised (Thogmartin et al. 2006,
Thogmartin 2010). A key suggestion for improving the usefulness
of the population size estimates was to incorporate an explicit
measure of uncertainty (Thogmartin et al. 2006). The handbook
to PIF 2013 identified the reporting of uncertainty bounds in the
population estimates as a “next step” (Blancher et al. 2013).

Table 1. Categories of population size (PS) scores used in the
Partners in Flight (PIF) species assessments of North American
landbirds. Smaller population sizes are associated with greater
vulnerability and are assigned larger PS scores (Panjabi et al. 2005,
2012, Rosenberg et al. 2016).
 

PS Score Global breeding population size

1 ≥ 50,000,000
2 ≥ 5,000,000 & < 50,000,000
3 ≥ 500,000 & < 5,000,000
4 ≥ 50,000 & < 500,000
5 < 50,000

We present a modification to the PIF approach to estimating
population sizes for landbirds breeding in the continental United
States (U.S.) and Canada (hereafter “North America”). This
modification allows for the range of uncertainty underlying the
raw data and the other model parameters to be numerically
presented in the final estimate. Specifically, we use a Monte Carlo
simulation to propagate uncertainty arising from the individual
components of the estimation process through to the final
estimation of total population size. The result is a distribution of
population size estimates for each species in each geographic
region, which can be subsequently described by standard
descriptive statistics (mean, median, quantiles) rather than as a
single point estimate. In addition to incorporating uncertainty,
we further refine the PIF population estimation approach to
include an update to the time-of-day adjustment factor (Blancher
et al. 2013) and the consolidation of a large portion of the process
into coded computational scripts written for the R platform (R
Core Team 2017), improving reproducibility and transparency.

METHODS

The Partners in Flight approach
PIF currently presents population sizes as single point estimates
with corresponding categorical data quality ratings. Here we
briefly describe the PIF approach to population size estimation
(for additional details see Rosenberg and Blancher 2005, Blancher
et al. 2007, 2013). The PIF approach relies on a series of logical
assumptions for extrapolating survey-level counts to total
abundance within defined geographic regions. For landbird
species breeding primarily in North America, the primary data
source is the North American Breeding Bird Survey (BBS;
Pardieck et al. 2016, Rosenberg et al. 2017). The approach is based
on a series of adjustment factors applied to mean bird counts
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observed along BBS routes. Each adjustment factor is meant to
adjust the mean count for the approximate proportion of birds
that are missed relative to those that are observed, as well as the
amount of area (on average) that is effectively surveyed along a
BBS route.  

The PIF approach to estimating the population size within each
defined geographic area is based on the following equation: 
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where Y is the number of individuals of a species reported along
a BBS route j in year i, n is the number of times a route was
surveyed under acceptable conditions during the sequence of
years from i = t to T, which covers a time period of 10 consecutive
years (typically the most recent decade of available BBS data,
2006 to 2015 data were used in the estimates presented below), m 
is the number of routes within the geographic area, a is the land
area (km²) within the geographic area. The divisor on a, 25.1, is
the presumed area in km² that is sampled along a BBS route (50
sample locations each with a 400 m sampling radius). The three
constants: CD, CP, and CT, are species-specific adjustment
parameters. CD and CP are both categorical and derived through
a process of literature review, data review, and expert opinion
(Blancher et al. 2013). CD, the detection-distance adjustment, is
used to modify the presumed BBS sampling radius, 400 m, for
each species based on habitat, behavior, and song characteristics.
CP, the pair adjustment, is used to modify the estimate based on
the assumption that detection of some species may be biased
toward only one member of a breeding pair. CT, the time-of-day
adjustment, is used to modify the estimate due to variable
detection probability throughout the survey period. CT is derived
through an analysis of stop-level BBS data (available from 1997
to the present) and estimates the ratio of the average count at the
peak-detection stop to the mean count across all stops based on
polynomial smoothing models (Blancher et al. 2007, 2013).  

The smallest geographic units of analysis (here referred to as
“physio-political regions”) are regions defined by the intersection
of states in the U.S. or provinces/territories in Canada with BCRs
(CEC 1999, Bird Studies Canada and NABCI 2014). Land area
(km²) was derived from a Geographic Information System overlay
of BCRs with states or provinces/territories. Large lakes the size
of Utah’s Great Salt Lake or larger (e.g., all of the Great Lakes,
along with several large lakes between Lake Winnipeg, Manitoba,
and Great Bear Lake, Northwest Territories) were excluded from
the calculation of land area (Blancher et al. 2007). Digital species
range maps (Ridgely et al. 2005) were used to estimate a range
adjustment for extrapolating to regions not sufficiently covered
by the BBS surveys (Blancher et al. 2013).  

The PIF 2013 approach to estimating population sizes does not
incorporate variance or uncertainty into the estimate. Rather, PIF
2013 reports categorical data quality ratings based on variation
among BBS routes in each region but does not measure or report
variation or uncertainty within the BBS route-level counts or in
any of the adjustment factors. Our method largely adheres to the
PIF approach as described above but incorporates uncertainty in
the regional BBS count estimates as well as the individual

adjustment factors, and propagates that uncertainty through to
the final population size estimates.

Mean BBS route count
There are two sources of variance in the number of birds counted
along BBS routes that we accounted for in the population size
calculation for each species in each region: within-route and
between-route variation. To account for within-route variation,
we calculated the mean and variance of total counts for each
species along each route within a region (for runs meeting
acceptable standards for time of day and weather conditions as
determined by the BBS; Pardieck et al. 2016) for the most recent
10 years of data (2015 at the time of this analysis). We used the
mean and variance to define a discrete distribution for each route
to sample from. If  the variance was greater than the mean (count
data overdispersed), we used a negative binomial distribution
(using the method of moment matching; Hobbs and Hooten
2015). If  the variance was not greater than the mean we sampled
from a Poisson distribution. For routes with only a single run in
the last 10 years, we sampled from a Poisson distribution around
the observed count.  

For each route in each iteration, we drew 10 random values from
either a negative binomial or Poisson distribution around the
mean count for that route, regardless of how many times a route
was actually run in the past 10 years. This was done to avoid
weighting routes by the number of runs conducted. For each
iteration of the population size calculation, we pooled the
simulated observations for all routes within a region and
calculated the mean to determine the mean route-level count for
the region.  

To account for between-route variation, we used a bootstrap
approach to select routes to represent a region. For each iteration,
we randomly selected, with replacement, a set of routes equal in
size to the total number of routes within each region. Because the
sampling was done with replacement, a route may have been
selected more than once or not at all for a given iteration.

Time-of-day adjustment
For many species, detectability can vary by time of day with daily
cycles in activity level, i.e., territorial calling or foraging
(Thompson et al. 2017). The time-of-day adjustment assumes that
birds are present at a constant rate throughout the period of a
BBS survey (typically from 30 minutes before sunrise until roughly
4 hours after sunrise), but the probability of detection varies with
daily bird activity. The proportion of birds present, but not
detected, is therefore proportional to the peak count over the
mean count across BBS stops. We revised the time-of-day
adjustment for each species by adding additional years of data
and using generalized additive models rather than polynomials
for the smoothed models. We used all available BBS stop-level
data for each species (50-stop data are available from the BBS
going back to 1997). Our generalized additive models relate the
time of day, i.e., stop number, to the number of birds observed at
each stop while accounting for route-level variation and
observation trends by year. Additional details describing how we
fit the smoothed time-of-day models are available in Appendix 1.  

We used the fitted curves to calculate a distribution for the time-
of-day adjustment statistic by sampling from the distribution of
the fitted curve at each stop. The time-of-day adjustment was
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estimated as the maximum divided by the mean across stops. The
result of this adjustment is that extrapolated population estimates
are based on the counts of birds during their peak time of
detection, reducing underestimates due to undetected individuals.
We acknowledge that there will still be an unmeasured fraction
of the population that goes undetected, even during the time of
peak detection within the survey, resulting in an underestimate in
population sizes, particularly for some cryptic and/or nocturnal/
crepuscular species. Alternative approaches to accommodate an
empirical estimate of detection probability are feasible for some
species, but these approaches remain beyond the scope of the
current improvements to the PIF approach employed here.

Pair adjustment
PIF assigns a pair adjustment multiplier to the PS calculation to
account for the probability that for some species, one member of
a breeding pair, e.g., singing male, is more likely to be detected
during a sight/sound survey than the other partner. For those
species, it is assumed that for every bird recorded at the peak time
of day, there may be a second bird present that was not recorded.
Therefore, the pair adjustment parameter should theoretically not
be less than 1 (both sexes equally likely to be detected) nor greater
than 2 (only one member of a pair detected). PIF assigned each
species to one of five categories (1.0, 1.25, 1.5, 1.75, or 2.0) based
on the likelihood that most detections were biased to one sex. To
assign these categories, PIF reviewed available evidence related to
observational sex-bias. Such evidence included the sex-ratio of
the birds observed, the species’ breeding phenology, and whether
the species was most often detected during the dawn chorus, i.e.,
a singing male, and/or singly or in groups (Blancher et al. 2013).  

We maintained these categorical assignments but incorporated
uncertainty in the assignments by replacing them with truncated
normal distributions. The means of the distributions were equal
to the previously assigned PIF pair adjustment values and
truncated at 1.0 and 2.0. We selected a variance term to describe
the pair adjustment distributions (sd = 0.13) that would allow
overlap between the categorical distributions.

Detection-distance adjustment
The PIF approach to estimating population sizes is particularly
sensitive to the detection-distance adjustment (Thogmartin et al.
2006, Thogmartin 2010). Comparisons with field tests of
detection distances suggest that the assigned detection-distance
categories for the PIF population size calculation may be too large
for many species (Confer et al. 2008, Hamel et al. 2009, Matsuoka
et al. 2012, Twedt 2015) potentially resulting in overly conservative
total population estimates. The PIF approach assigns each species
to one of seven detection-distance categories based on a
combination of published maximum detection distances (see
Rosenberg and Blancher 2005 and references therein), expert
opinion, and by comparing relative distances across species in
regional point count surveys that included detection distances
(Blancher et al. 2013).  

We still lack an empirically based approach that can be applied
systematically across species to estimate detection distances. To
incorporate uncertainty bounds on the PIF approach with respect
to the detection-distance adjustment, we randomly sampled from
uniform distributions with the lower bound being 80% of the
difference between the assigned distance adjustment category for
a given species and the next lower category, and the upper bound

being a 10% increase over the assigned category. We assigned the
sampling distribution in this manner so that the distribution
would (1) include the previously assigned detection-distance
adjustment, (2) be broad enough to encompass the uncertainty
of this parameter, and (3) partly account for recent empirical
estimates of detection distance suggesting that the assigned PIF
detection-distance categories may be generally overestimated (see
Matsuoka et al. 2012, Twedt 2015).

Estimation procedure
PIF reports population size estimates for > 450 landbird species
regularly breeding within North America by relying on multiple
data sources (Rosenberg et al. 2017). For the present study, we
focus on the 336 species for which the BBS is the sole or major
contributing data source. The remaining species for which PIF
reports population size estimates rely on non-BBS data sources,
such as species-specific surveys, that were deemed more reliable
than BBS for those species (Blancher et al. 2013, Rosenberg et al.
2017).  

To incorporate uncertainty into the PIF process, we employed a
Monte Carlo approach to estimate population size distributions
by randomly sampling from each variable or nonfixed model
component prior to calculating the population size estimate. The
components of the model that were variable were either species-
specific (pair adjustment, detection-distance adjustment, time-of-
day adjustment) or species-by-region specific (mean route-level
BBS count). Fixed model components were treated as known
without error (range adjustment, region area). Population size
distributions were derived by making 1000 iterations of the
calculation for each species in each region by making independent
random draws from each model component. We did not model
any correlation between model parameters. Results are presented
as the median result of the 1000 iterations with either 80% or 95%
bounds. To measure the degree of uncertainty around the
population size estimates, we calculated a standardized
interquantile distance as the difference between upper and lower
80% estimation bounds divided by the mean population size
estimate.  

Appendix 2 includes R scripts and for downloading and
processing BBS count data, code and accompanying parameter
files for running the Monte Carlo population size estimation, and
summary output data of population size estimates with
uncertainty ranges. Aside from the changes noted here, the PIF
population size estimation is as described previously in the PIF
database and handbooks (Blancher et al. 2007, 2013).

RESULTS

Population size estimates
For the 336 landbird species whose estimates rely on the BBS, PIF
2013 estimated 5.85 billion adult birds in North America, and
7.67 billion adult birds globally based on data from 1998 to 2007.
Using our refined methods, and BBS data from 2006 to 2015, we
estimate 6.34–7.67 billion in North America and 8.25–10.05
billion globally at 80% estimation bounds, which is approximately
8–30% higher than the PIF 2013 estimates. At 95% estimation
bounds, we estimate 6.05–8.08 billion adult birds in North
America and 7.88–10.63 billion globally for the comparison set
of species.  
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At 80% bounds, 47.6% of species have new uncertainty ranges
that encompass the PIF 2013 estimates, this fraction of species
increases to 63.5% at the 95% bounds. Of those species for which
our new estimate range does not include the PIF 2013 North
American estimate, 88.6% and 90.2% have ranges greater than the
previous point estimates at 80% and 95% bounds, respectively
(Fig. 1).

Fig. 1. Comparison between previous global Partners in Flight
(PIF) population size estimate (PIF 2013) and estimates from
this study. Points indicate the median global population size
estimate. Error bars show the 80% bounds on the current
estimates. Areas between the dashed lines indicate the
corresponding ranges of the PIF population size (PS) score
used for species vulnerability assessment.

Population size uncertainty
The mean standardized interquantile distance across species for
the combined North American population totals was 0.35 (range:
0.02–1.85). This estimation excludes physio-political regions
where population size estimates were based on non-BBS sources.
The PIF 2013 population size estimates did not include
uncertainty bounds comparable with the new approach; however,
PIF’s assignment of species to PS scores based on order-of-
magnitude categories of abundance (Table 1; Blancher et al. 2007)
is robust only if  variance in the estimates is generally less than an
order of magnitude. Our new uncertainty ranges were generally
much tighter than an order of magnitude, with 76% of species
having upper 95% estimates less than twice their lower 95%
estimates (90% of species for 80% uncertainty estimates). Only
seven species, all with small populations or restricted ranges
within North America, had upper 95% estimates that were an
order-of-magnitude larger or more than the lower 95% estimates
(Mexican Whip-poor-will [Antrostomus arizonae], Allen’s
Hummingbird [Selasphorus sasin], Flammulated Owl [Psiloscops

flammeolus], Elf  Owl [Micrathene whitneyi], Black-whiskered
Vireo [Vireo altiloquus], Mexican Jay [Aphelocoma wollweberi],
and Seaside Sparrow [Ammodramus maritimus]). The size of the
standardized interquantile distance was strongly influenced by
the number of BBS routes used in the analysis, with fewer routes
analyzed leading to larger uncertainty bounds (Fig. 2).

Fig. 2. Standardized interquantile distances for U.S./Canada
population size estimates plotted against number of Breeding
Bird Survey (BBS) routes summarized. The distance statistic is
calculated at 80% bounds and standardized by the mean
population size. Note that the number of routes summarized
may be greater than the number of routes a species has been
observed on in the past 10 years because estimation is made by
sampling all BBS routes within a region. Open dots indicate
species whose 95% uncertainty range exceeded one order of
magnitude. The solid line shows the mean across species.

We found that the PIF 2013 data quality scores (5 color-coded
rating categories ranging from good to poor quality; Blancher et
al. 2007) were consistent with the widths of our newly calculated
uncertainty measures. We quantified the width of uncertainty by
calculating a standardized interquantile range (distance between
80% bounds divided by the mean population size estimate).
Comparing the uncertainty ranges with the PIF 2013 quality
ratings showed increasing uncertainty with increasingly poorer
quality ratings. We also found greater variation in the uncertainty
widths with increasingly poorer PIF data quality ratings (Fig. 3).

PIF species assessment scores
One important consideration of our new methods is whether
incorporating uncertainty in PS estimation would lead to
uncertainty in assigning PS scores in the PIF species assessment,
which could potentially lead to uncertainty in a species’
conservation status. We found 87.5% (294) of species fell into
single global PS score categories across the entire range of
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Table 2. Uncertainty in assigning Partners in Flight (PIF) population size (PS) scores, and uncertainty ranges in population size estimates
and the four nonfixed model components. The latter uncertainty ranges are reported as standardized interquantile distances, calculated
at 80% distributional bounds divided by the mean.
 

% Agreement in PS
scoring

Mean standardized interquantile distances for full U.S./Canada population size
and individual model components

PS
score

Number
of species

Mean
number of

routes

At 80%
bounds

At 95%
bounds

Population
size

Mean BBS
count†

Time-of-day
adjustment

Pair
adjustment

Distance
adjustment

1 45 2635 93.3 88.9 0.20 0.03 0.08 0.13 0.58
2 152 1730 94.1 86.8 0.26 0.05 0.05 0.15 0.58
3 102 1034 81.4 67.6 0.43 0.14 0.06 0.15 0.58

4 & 5 37 576 70.3 56.8 0.71 0.17 0.07 0.15 0.60
All species 336 1512 87.5 78.0 0.35 0.09 0.06 0.15 0.58

†Summarized for each species over all BBS routes with nonzero count averages weighted by the percent of the total population for each region.

Fig. 3. Standardized interquantile distance (distance between
80% bounds divided by the mean) grouped by the Partners in
Flight (PIF 2013) data quality categories for North American
population size estimates. PIF data quality categories are color-
coded and correspond to ordered levels of data quality or
quantity ranging from green, the highest quality category,
through beige, yellow, orange, and red (Blancher et al. 2007).
Not shown: Northern Wheatear (Oenanthe oenanthe), the sole
species with a red PIF data quality score in this analysis, with
standardized interquantile range = 0.41. Each box shows the
number of species associated with each score. Horizontal lines
indicate the median value, boxes span first and third quartiles,
whiskers extend 1.5 x the interquartile range (or minimum
value for lower whisker if  less), remaining value is plotted as a
point.

uncertainty at 80% bounds. At 95% bounds of uncertainty, 78.0%
(262) of species fell into single PS score categories. We found one
species, Mexican Whip-poor-will, in which the population size
uncertainty range spanned more than the entire upper and lower
bound of the presumed PS score at 80% bounds. Widening the
uncertainty range to 95% bounds added an additional two species
(Black-whiskered Vireo and Seaside Sparrow). Of these three
species, only the Seaside Sparrow’s range is entirely within the
coverage area of the BBS; Mexican Whip-poor-will and Black-
whiskered Vireo global population estimates are based partially
on range adjustment extrapolations with only a small portion of
the total range within the area of BBS coverage (19% for Mexican
Whip-poor-will and 6% for Black-whiskered Vireo).  

In general, species with smaller estimated populations within
North America were more likely to have larger standardized
interquantile distances and were, therefore, also more likely to
have uncertainty in the assignment of a PS score (Table 2). Our
analysis would result in 20 species being assigned a different PS
score relative to scores based on the PIF 2013 population size
database, though only nine of those species would not include the
PIF 2013 score within the uncertainty bounds of the new analysis.

Components of uncertainty
Of the four model components serving as sources of uncertainty,
interquartile variance was largest for the distance adjustment
(mean of 0.58; Table 2), and smallest for the time-of-day
adjustment (0.06) and BBS average count (0.09). Variance in the
distance adjustment, pair adjustment, and time-of-day
adjustment was consistent across all population size categories
(Table 2). The variance of the weighted mean BBS count was
larger for relatively smaller population sizes (PS score = 3 & 4;
Table 2) leading to the pattern of larger uncertainty ranges for
smaller population size estimates (Table 2).

DISCUSSION
The effort to generate standardized population size
approximations for several hundred bird species has been an
important contribution to bird conservation in North America.
These estimates are an important component of the PIF species
assessment but have also been used for other conservation
planning and assessment purposes. We present new methods for
characterizing and expressing the magnitude of uncertainty
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around PIF population size approximations and, as such, increase
the utility of these estimates in conservation planning and risk
assessment. Previous estimates published by PIF 2013 used
categorical data quality ratings, which carried an implicit, but
unknown, level of uncertainty. Categorical data quality ratings
were useful in providing a sense of confidence in the source of
data used in estimation, but unless they are calibrated to
measurable ranges, they do not provide information about the
uncertainty inherent in the estimation process (Akçakaya et al.
2000).  

Our improved methodology, replacing categorical ratings with
quantitative uncertainty bounds, has important implications for
both the PIF species assessment process and for the use of
population size estimates based on the PIF approach. These
refinements will be particularly important for comparing
population size estimates to a regional conservation target or
recovery goal, or for assessments of avian mortality impacts that
rely on population size estimates to contextualize potential
population-level consequences. Our approach provides an explicit
uncertainty range on population size estimates, allowing for a
quantitative assessment of whether a species meets a given
assessment criterion, conservation target, or has the potential to
be severely impacted by a novel source of mortality.

Implications for PIF species assessment
The primary use of population size estimates in the PIF species
assessment process is to assign each species a categorical PS score,
based on order-of-magnitude ranges of populations sizes: the
smaller the population size, the higher the PS score and implied
level of conservation vulnerability (Panjabi et al. 2005, 2012).
Although tremendous precision is not necessary to place most
species into the correct PS score category, large uncertainty in
estimates could result in species being assigned an incorrect PS
score. Previous PIF 2013 data quality ratings did not indicate
when the uncertainty in a population size estimate might span
more than one PS category. In contrast, our new methodology
explicitly provides uncertainty bounds that may span more than
one PS category, indicating when there is uncertainty in the score
assignment for a particular species that may affect PIF’s overall
assessment for that species.  

Fortunately, we found the width of the uncertainty bounds for
the majority of landbird species in our analysis to be much
narrower than the order-of-magnitude distance between scoring
categories, suggesting a high level of confidence in PIF's PS score
assignment for most species. Some species with estimates near a
boundary between two categorical scores may nevertheless span
more than one category. In addition, we found that confidence in
the assignment of a single categorical PS score decreased with
increasing vulnerability level (higher PS score), highlighting the
importance of understanding uncertainty in estimates for species
of high conservation concern. This uncertainty in assigning PS
scores need not be viewed as problematic for future PIF species
assessments, however, as it allows for calculating how much of
the uncertainty distribution lies in one category versus another
(Akçakaya et al. 2000). Our approach also opens the possibility
to consider a range of PS scores where necessary and may prove
beneficial for identifying when an alternative data-source should
be sought that might have less uncertainty.

Patterns and sources of uncertainty
We found a general pattern where the width of the uncertainty
bounds for many species roughly approximated the categorical
data quality ratings from PIF 2013 (Figure 3). The PIF 2013 data
quality ratings were based on three subcomponents: a variance
component based on the amount of variation around the route-
level counts within a region; a sample-size component based on
the number of BBS routes within a region; and a BBS coverage
component based on the proportion of a species breeding range
that is sampled by the BBS. The overall data-quality rating was
assigned based on the lowest scoring subcomponent. Comparing
our population size uncertainty ranges with the PIF 2013
categorical data quality ratings showed wider uncertainty bounds
associated with lower quality ratings. We also found increasing
variation in the width of uncertainty bounds with lower PIF data
quality. The pattern of the standardized interquantile distances
being generally in concordance with the PIF 2013 data quality
rating is not surprising because, aside from the coverage
component, the count variance and the number of routes
contribute to both metrics of uncertainty. This similarity does not
diminish the importance of quantifying variance rather than
summarizing it into categories, particularly because the
quantified variances presented here incorporate measures of
variance in distance and pair adjustments that were not included
in PIF’s data quality ratings.  

At regional scales, wide uncertainty bounds in population size
estimates are often a consequence of a species being sampled on
few BBS routes within a region. Additionally, whether routes
sufficiently sample available land cover or vegetation types within
a region can also influence the width of the uncertainty bounds.
For rare species and habitat specialists that are not repeatedly
sampled at different locations, resampling routes to derive
uncertainty bounds can result in some of the less common land
covers not being represented in any particular random draw. This
occasionally resulted in the lower bound of the uncertainty range
being zero in physio-political regions where we know the species
to occur. This source of negative bias would be expected for any
sort of extrapolation relying upon few data sources (Machtans
and Thogmartin 2014), emphasizing the need for as complete and
representative a coverage as possible in future surveys. Although
PIF continues to provide population size estimates at BCR, state,
and province scales, new uncertainty bounds derived from our
methodology will allow users to evaluate the reliability of these
estimates.  

A primary factor influencing species detectability, and subsequent
population estimates based on survey data, is variation within
and among observers (Sauer et al. 2013). Other attempts at
extrapolating BBS data to population size estimates (Runge et al.
2009, Thogmartin et al. 2014) relied on hierarchical models of
BBS counts assumed to derive from a Poisson distribution
accounting for year and region as well as overdispersion. In these
models, observer-level differences are controlled for with an
observer random effect and a fixed effect for novice observers. In
our approach, the uncertainty caused by observers is subsumed
by the time-of-day and distance adjustments because both relate
to observation processes that may vary by individual observers.
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Impact of individual model components
With our improved methodology, PIF will be updating
population size estimates for all North American landbirds. These
new estimates tend to be larger with the refined estimation
approach we employ here than the previous PIF 2013 published
estimates. Although our new estimates reflect a more recent
decade of BBS count data (2006–2015 vs. 1998–2007), we caution
against attributing any differences to actual trends in bird
populations. The tendency toward higher population size
estimates in our analysis likely arises from changes in the
adjustment factors used in the calculations (detection-distance,
time-of-day). Overall, there is general concordance between the
PIF 2013 estimates and our present estimates (Fig. 1) as would
be expected because the calculation formula and data sources are
similar. Only by applying identical methodology to both decades
of BBS data would we be able to directly compare estimates from
the two time periods.  

The individual model components in the estimation process can
have large effects on both population size estimates and the width
of the uncertainty bounds around those estimates. A previous
review of the general PIF approach to population size estimates
pointed out several areas where the method is sensitive to inherent
assumptions and adjustment factors used in the estimation
(Thogmartin et al. 2006). Our analysis of interquartile variance
by component indicated that variance was highest for the distance
adjustment factor (Table 2). A sensitivity analysis conducted by
Thogmartin (2010) also suggested that relatively small changes in
this component have large impacts on the population size
estimate. For common birds (PS score = 1 & 2), improvements to
the distance factor will have the greatest impact on improving
both the precision and accuracy of population estimates. In
contrast, for species with small population sizes (PS score = 4 &
5), overall uncertainty was higher than variance in the distance
factor, suggesting that for these species finding alternative sources
of data for population size estimation may be the best action.  

The general shift toward larger population size estimates
compared with PIF 2013 was also due to a decision to shift the
range of the detection-distance adjustment distribution so that a
greater proportion of random draws were lower (as opposed to
higher) than the previous fixed detection-distance adjustment
values. Several empirical studies of effective detection distances
(Confer et al. 2008, Hamel et al. 2009, Matsuoka et al. 2012, Twedt
2015) suggested that the previous detection distances used by PIF
were systematically too large, resulting in underestimates of
population size, and our decision here was an attempt to address
this concern. However, we acknowledge that PIF’s categorical
distance correction parameter remains imprecise and would be
greatly improved with an empirical analysis incorporating a wide
range of taxa across a range of land-cover types.

Future of population size estimation
Here we propose a means to improve an aspect of how PIF
estimates and presents population sizes by providing quantitative
uncertainty bounds. However, there is still room for additional
improvements for estimating the size of North American bird
populations. These improvements might proceed down
alternative paths. First, PIF may maintain the same fundamental
approach while making further refinements to individual model
components. Alternately, PIF may pursue entirely new

approaches and data sources beyond what has been used to date.
We note that the distributions used for various adjustment factors,
as well as the other components of the estimation process, can
easily be refined or replaced in the work flow using the R scripts
provided with this paper. It will therefore be relatively simple to
make further adjustments to individual model components and
generate refined population size estimates in the future as more
data and new analyses become available. For example, the
available analyses to assign effective detection distances do not
yet cover the full range of species, are limited in geographic
coverage, or are not conducted using road-side point-counts and
thus are not directly applicable to estimating population size
based on BBS counts. We hope that future work in this area will
allow us to improve the detection-distance adjustment factor,
because it is an important source of uncertainty.  

The main source of data for PIF population estimation has been
the BBS, which was designed to estimate avian population trends
through time. The BBS methodology does not include techniques
to estimate population density for a known area (Link and Sauer
1998, Sauer et al. 2013), which creates challenges for using it as a
data source for estimating population size. However, no other
systematic bird survey program has the breadth of spatial,
temporal, and taxonomic coverage as the BBS (Rosenberg et al.
2017). Future iterations might consider alternative monitoring
approaches designed to generate population size estimates
without the need to mark and recapture individuals (Royle 2004,
Kéry et al. 2005, Dail and Madsen 2011, Pavlacky et al. 2012), as
well as current bird survey programs in North America that
incorporate field methodology for estimating abundance
(Matsuoka et al. 2014, Woiderski et al. 2018). For species and
regions where alternative data are available, those approaches may
be preferable to extrapolations of data from the BBS. In addition,
the rapid growth of eBird (Sullivan et al. 2014), and range-wide,
year-round modeling of abundance using eBird data (Fink et al.
2010, Johnston et al. 2015), hold promise for informing
population estimates of many species. Integrating available survey
data across multiple studies and monitoring programs into a
single model may allow for shared inference and calibration of
more accurate population estimates (Sólymos et al. 2013).
Constructing such a model for all landbirds breeding in North
America, as well as extending these approaches to the
nonlandbird avifauna, remain areas for future work.

Responses to this article can be read online at: 
http://www.ace-eco.org/issues/responses.php/1331
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APPENDIX 1 

Additional Details on Time-of-Day Adjustment 

Data source and filtering 

We downloaded the raw BBS 50-stop data for each species for the period 1997-2014 (Pardieck et al. 

2015). During the model testing and development phase we found that limiting the dataset to 500 BBS 

routes for widespread species (i.e. species that occurred on > 500 routes) greatly increased computational 

time without significantly altering model results. For these species, we applied two data quality filters to 

preferentially include route-level data that was representative of species: 1) we excluded BBS routes 

where the mean number of counts (across years) was an extreme outlier (defined as 3x the interquartile 

distance) relatives to all other BBS routes, and 2) we preferentially included BBS routes if they were 

either run more than once with peak counts at different stop numbers in different years (unless the peak 

count occurred at the first stop), or had a large number of stops (defined as >= 75% percentile) where the 

species was observed. We applied these filters to limit variability due to differences in habitat suitability 

along the 50 stops of the survey being incorrectly attributed as changes in time-of-day detectability.  

Model  

We fit generalized additive models (GAMs) to the raw BBS 50-stop data for each species to relate the 

time of day (i.e., stop number) to the number of birds observed at each stop while accounting for route-

level effects and trends through time. We modeled the number of birds counted at each stop with a 

negative binomial distribution to allow for overdispersion of counts. The stop number acts as a proxy for 

the time-of-day since survey volunteers are instructed to begin the survey at a set time relative to dawn 

(30 minutes before local sunrise). The model finds a smoothed nonlinear function to relate stop number to 

the number of birds counted using a penalized cubic regression spline. The model included a random 
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effect for each BBS route and a linear fixed effect for survey year. All models were fit in the R language 

and environment (R Core Team 2017), using the package ‘mgcv’ (Wood 2011).  

The ‘mgcv’ package has a GAM function that is optimized for efficiently fitting models to large datasets 

(bam; Wood et al. 2015). However, for the negative binomial family, the ‘bam’ function cannot handle 

fitting the 𝑡𝑡ℎ𝑒𝑒𝑡𝑡𝑒𝑒 (𝜃𝜃) parameter, and a fixed value is required. The parameter 𝜃𝜃, in a negative binomial 

distribution, specifies the variance such that 𝑣𝑣𝑒𝑒𝑣𝑣(𝑦𝑦) = 𝜇𝜇 +  𝜇𝜇2/𝜃𝜃 , where 𝜇𝜇 = 𝐸𝐸(𝑦𝑦). To take advantage of 

this optimized GAM function, we fit the models using a two-step process. First, to estimate 𝜃𝜃 we 

specified a model using a subset of the data and the ‘gam’ function. For this step, we randomly selected 

50 BBS routes from the set of suitable routes (see Data source and filtering above), fit a GAM model as 

described above, and recorded the 𝜃𝜃 parameter. We repeated this 10 times for each random draw of 50 

BBS routes for each species. To make sure the estimation of 𝜃𝜃 was not overly influenced by the number 

of routes included in the random draw, we tested models with random draws 40, 60, 80, or 100 BBS 

routes on a subset of species. No pronounced pattern emerged with 𝜃𝜃 changing as a function of the 

number of routes included in the set. Once the first step was complete, we fit the full model using the 

mean 𝜃𝜃 value from the previous step as a fixed term in the negative binomial distribution using the ‘bam’ 

function.  

Time-of-day adjustment  

We then used the fitted time-of-day curves to calculate a time-of-day adjustment distribution for each 

species by resampling the fitted curve at each stop and re-calculating the maximum count divided by the 

mean count for each iteration. We parameterized the time-of-day distributions based on 1000 iterations. 

For species recorded on < 100 BBS routes, we calculated an average weighted by number of routes from 

all species in the same taxonomic (genus or family) and/or temporal (diurnal/nocturnal) group with > 100 

routes (Table A1). Previous PIF population size estimates used averaging for species with > 50 routes 
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(Blancher et al. 2007). The decision to increase this to 100 routes was based on an examination of the 

coefficient of variation of the time of day adjustment statistic as a function of the number of routes. 
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Table A1.  Species present on < 100 BBS routes for which a weighted mean by number 
of BBS routes from the same taxonomic (genus or family) and/or temporal 
(diurnal/nocturnal) group with > 100 routes was used to estimate the time-of-day 
adjustment.  

 Genus mean 

Greater Prairie-Chicken (Tympanuchus cupido) Long-billed Thrasher (Toxostoma longirostre) 

Allen's Hummingbird (Selasphorus sasin) Bendire's Thrasher (Toxostoma bendirei) 

Rough-legged Hawk (Buteo lagopus) California Thrasher (Toxostoma redivivum) 

Western Screech-Owla (Megascops kennicottii) Le Conte's Thrasher (Toxostoma lecontei) 

Lewis's Woodpecker (Melanerpes lewis) Crissal Thrasher (Toxostoma crissale) 

Gila Woodpecker (Melanerpes uropygialis) Bohemian Waxwing (Bombycilla garrulus) 

Golden-fronted Woodpecker (Melanerpes aurifrons) American Pipit (Anthus rubescens) 

Nuttall's Woodpecker (Picoides nuttallii) Hoary Redpoll (Acanthis hornemanni) 

White-headed Woodpecker (Picoides albolarvatus) Lawrence's Goldfinch (Spinus lawrencei) 

Gilded Flicker (Colaptes chrysoides) Lapland Longspur (Calcarius lapponicus) 

Gyrfalcon (Falco rusticolus) Abert's Towhee (Melozone aberti) 

Gray Vireo (Vireo vicinior) Black-chinned Sparrow (Spizella atrogularis) 

Black-whiskered Vireo (Vireo altiloquus) American Tree Sparrowb (Spizelloides arborea) 

Mexican Jay (Aphelocoma wollweberi) Bell's Sparrow (Artemisiospiza belli) 

Northwestern Crow (Corvus caurinus) Seaside Sparrow (Ammodramus maritimus) 

Cave Swallow (Petrochelidon fulva) Hooded Oriole (Icterus cucullatus) 

Bridled Titmouse (Baeolophus wollweberi) Bronzed Cowbird (Molothrus aeneus) 

Black-crested Titmouse (Baeolophus atricristatus) Lucy's Warbler (Oreothlypis luciae) 

Black-tailed Gnatcatcher (Polioptila melanura) Grace's Warbler (Setophaga graciae) 

Gray-cheeked Thrush (Catharus minimus) Red-faced Warbler (Cardellina rubrifrons) 

 Family mean 

Chukar (Alectoris chukar) Northern Hawk Owlc (Surnia ulula) 

Willow Ptarmigan (Lagopus lagopus) Elf Owla (Micrathene whitneyi) 

Rock Ptarmigan (Lagopus muta) Great Gray Owlc (Strix nebulosa) 

Mexican Whip-poor-willa (Antrostomus arizonae) Long-eared Owla (Asio otus) 

Black Swift (Cypseloides niger) Flammulated Owla (Deltarhynchus flammulatus) 

Costa's Hummingbird (Calypte costae) McCown's Longspur (Rhynchophanes mccownii) 

Harris's Hawk (Parabuteo unicinctus)  

All Diurnal 

Arctic Warbler (Phylloscopus borealis)  
Northern Wheatear (Oenanthe oenanthe)   
a Summarizing group is further subset to only nocturnal species. 
b Summarized by genus Spizella.  
c Summarizing group is further subset to only diurnal species. 

 



Appendix 2. R scripts and associated parameter files

Please click here to download file ‘appendix2.zip’.

http://www.ace-eco.org/1331/appendix2.zip
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