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Grassland birds have suffered dramatic population declines and are under threat of
further grassland conversion. Simultaneously, grassland regions are projected to
have high rates of future climate change. We assessed the vulnerability of grassland
birds in North America under scenarios of global climate change reflecting the
objectives of the Paris Agreement. The assessment incorporated model-based pro-
jections of range losses and gains as well as trait-based information on adaptive
capacity. Nearly half (42%) of grassland birds were highly vulnerable during the
breeding season under a 3.0�C increase in global mean temperature scenario rep-
resenting current commitments under the Paris Accord. This proportion declined to
13% with a 2.0�C increase and to 8% with a 1.5�C increase over preindustrial
global mean temperature. Regardless of scenario, more than 70% of grassland birds
had some vulnerability to climate change. Policy actions beyond the present-day
national commitments under the Paris Accord are needed to reduce vulnerability of
grassland birds in a changing climate.
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1 | INTRODUCTION

Temperate grasslands are at risk globally due to extensive
land conversion and comparatively little land conservation
in spite of their high conservation value (Hoekstra, Boucher,
Ricketts, & Roberts, 2005). The northern and tallgrass prai-
ries of North America, in particular, have high irreplaceabil-
ity (Brooks et al., 2006) and were identified as critically
endangered among the Global 200 priority ecoregions for
conservation (Olson & Dinerstein, 2002). Yet, net land con-
version rates were locally as high as 10% from 2008 to 2012
in some regions of the United States, with 77% of new
cropland coming from grasslands (Lark, Salmon, &
Gibbs, 2015).

Extensive habitat loss in North American grasslands
has resulted in wildlife population declines. Since the
1970s, habitat loss from conversion to row-crops, along
with interference from farming activities and exposure to
pesticides has directly impacted bird abundance, survival,
and reproduction (Stanton, Morrissey, & Clark, 2018).
Observed declines in U.S. grassland bird populations are
>40% since 1966 (North American Bird Conservation
Initiative [NABCI], 2017). Remaining grasslands are
highly fragmented and limited in their capacity to support
diverse bird communities, including the most vulnerable
species which require large, contiguous grasslands
(e.g., >260 ha, Johnson, Granfors, Niemuth, Estey, &
Reynolds, 2010). As a result, 27% of North American
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grassland bird species are considered of high conserva-
tion concern (NABCI, 2016).

Climate change may further threaten grasslands and
grassland birds. Temperate grassland regions are projected
to have some of the highest climate change velocities
(a measure of the speed of travel needed to keep pace with
climate change) among biomes on Earth (Loarie et al.,
2009). Over the last 60 years bird species within grassland
ecosystems have experienced bioclimatic velocities at a
rate of 1.3 km/year, more than double the pace of distribu-
tion shift estimates across terrestrial systems globally
(0.61 km/year) (Bateman et al., 2016). Furthermore, the
limited availability and fragmentation of grassland habitat
may complicate grassland birds' ability to track warming,
making these species even more vulnerable to climate
change (McGuire, Lawler, McRae, Nuñez, &
Theobald, 2016).

Shifts in wildlife distributions are a recognized finger-
print of climate change (Parmesan & Yohe, 2003). Globally,
studies examining responses to climate change across taxa
found significant impacts on population parameters, with a
negative response to rising temperatures and positive
response to precipitation (Pearce-Higgins et al., 2015). Pro-
jections of avian distribution shifts in response to climate
change correlated with observed changes in abundance in
both Europe and North America (Stephens et al., 2016). In
the United States, birds have demonstrated multidirectional
shifts rather than a uniform response to warming with both
changes in temperature and more extreme weather events
contributing (Bateman et al., 2016). Clearly, climate
responses are species-specific, and sensitive relative to other
drivers such as trophic interactions and land-use change
(Rapacciuolo et al., 2014).

In spite of the potential risk, few national policies reduce
the threat of climate change sufficiently. The Paris Agree-
ment (United Nations [UN], 2015) includes 174 ratified
parties (mostly nations) committed to reducing greenhouse
gas emissions or increasing carbon sequestration. The agree-
ment aims to limit global mean temperature increases to less
than 2�C above preindustrial levels; a level of warming
above which the risks of climate change to human civiliza-
tion and the natural world are greatly increased (IPCC,
2013). Here, we assess the risk of climate change to grass-
land birds using a model-based Climate Change Vulnerabil-
ity Assessment (CCVA) for 38 species of North American
grassland birds across Canada, the United States, and Mex-
ico. We used projections of climate suitability for the breed-
ing and nonbreeding seasons along with trait-based
information on dispersal to generate a novel index of climate
change vulnerability. We generated vulnerability scores for
three policy-relevant scenarios: 1.5, 2.0, and 3�C increases
in global mean temperature. The objective of this study was
to assess how climate change vulnerability for grassland

birds in North America changed under three scenarios
reflecting current and potential climate change targets.

2 | METHODS

The Intergovernmental Panel on Climate Change (IPCC)
suggests estimating vulnerability to climate change as a
function of a species' exposure to change, its sensitivity to
those changes, and its adaptive capacity in the face of
change (Foden & Young, 2016). In practice, CCVAs use a
range of approaches (Foden & Young, 2016; Pacifici et al.,
2015; Willis et al., 2015). Correlative approaches make use
of future projections from species distribution models
(i.e., niche models; Peterson et al., 2011) to assess vulnera-
bility. Mechanistic assessments simulate biological
responses to climate (e.g., demography, Bancroft, Lawler, &
Schumaker, 2016 or dispersal, Morin & Thuiller, 2009).
Trait-based approaches make use of published literature and
expert opinion to score species based on their biological
traits (Foden et al., 2013). And, combined (i.e., hybrid)
approaches take elements of one approach and integrate
them into another, such as using natal dispersal and genera-
tion times to restrict projections of species distribution
models by a biologically meaningful maximum dispersal
distance for the projection period (Willis et al., 2015). Com-
bined approaches, when available data allows, are desirable
because they address the limitations of any one approach
(Willis et al., 2015). We conducted a CCVA for 38 species
of North American grassland birds across Canada, United
States, and Mexico using a combination of correlative
models and trait-based information.

2.1 | Avian and environmental data

In order to build ecological niche models for 38 grassland
birds we assembled bird observation data and covariates of
climate and habitat for the portion of North America span-
ning Mexico, the United States, and Canada. We compiled
bird occurrences from >40 datasets (see Supporting Infor-
mation for more details) to create the largest known data-
base of presence records for grassland birds (~4.1 million
records). Records with incomplete geographic coordinates
were removed, along with records including metadata iden-
tifying surveys covering lengthy distances (>1 km), large
areas (>100 ha), long durations (>180 min), and those
occurring outside of daylight hours (5 a.m.–8 p.m.). We
also filtered by date ranges to build breeding (June–July),
resident (year-round), and nonbreeding (December–
January) models. We included 36 native terrestrial grass-
land species based on NABCI’s 2009 State of the Birds
habitat classifications, as well as 2 introduced grassland
game-species (Gray Partridge [Perdix perdix] and Ring-
necked Pheasant [Phasianus colchicus]). Some were not
grassland-obligate species, and environmental covariates

2 of 13 WILSEY ET AL.



included other landcover types to distinguish selected and
avoided landcover. We reviewed published range maps to
determine if a species had a separate breeding and non-
breeding range. For the four species whose nonbreeding
range was mostly outside of the study area, we modeled
only the breeding season.

We used current and modeled future climate developed
by AdaptWest (Wang, Hamann, Spittlehouse, & Carroll,
2016) as climate covariates in our models. Climate grids
consisted of 23 million grid cells covering the study area at a
1 km resolution. We used statistically downscaled climate
normals from 1981 to 2010 derived from the Climatic
Research Unit Timeseries 3.22 dataset (crudata.uea.ac.
uk/cru/data/hrg/) to represent current climate for model
parameterization and validation (Wang et al., 2016). We
used climate projections based on the Coupled Model
Intercomparison Project phase 5 (CMIP5) from three indi-
vidual General Circulation Models (GCMs) (CCSM4,
GFDL-CM3, and INM-CM4) and an ensemble of 15 GCMs
under two greenhouse gas concentration trajectories (RCPs
4.5 and 8.5) for two future time periods (2050s and 2080s)
to represent future conditions and to assess vulnerability. We
associated projections to the 2050s under RCP 4.5 with the
1.5�C global mean temperature rise policy scenario, and pro-
jections under RCP 8.5 to the 2050s and 2080s with the
2.0�C and 3.0�C policy scenarios, respectively. Here, we
report results based on the 15-GCM ensemble projection.
This is an average projection; therefore, we also assessed
agreement in our vulnerability classifications by comparing
ensemble projections with three individual GCMs that cap-
ture the range of warm-wet (GFDL-CM3) and cold-dry
(INM-CM4) and intermediate (CCSM4) futures projected
for the continent (Wang et al., 2016).

We built breeding season models (including residents
and migrants) for 38 species and nonbreeding season models
for 34 species (including residents and migrants). Each spe-
cies model included either 10 (breeding) or 11 (nonbreeding)
environmental covariates (Table 1). These were selected
from a set of 27 variables (see Supporting Information
Appendix 1 for a complete list grouped using hierarchical
agglomerative clustering of 100,000 points randomly placed
across the study area, Crowther et al., 2015). All models
included the annual climatic covariates of climatic moisture
deficit (CMD), number of frost-free days, mean annual pre-
cipitation (MAP), and precipitation as snow (PAS); and non-
climatic covariates for land-use, vegetation, and terrain
ruggedness. Summer models also included seasonal climate
covariates (mean temperature of the warmest month, degree-
days below 0�C [chilling degree days], and summer heat
moisture index), as did winter models (mean temperature of
the coldest month, degree-days above 5�C [growing degree
days]). Land-use was represented by a static categorical map
of only anthropogenic land-use classes (e.g., agriculture and
developed) derived from the Commission for Environmental

Cooperation's (CEC) North American Environmental Atlas
2010 landcover dataset (Canada Centre for Remote Sensing
et al., 2013). Present and future vegetation was extracted
from modeled distributions of 46 North American biomes
(Rehfeldt, Crookston, Sáenz-Romero, & Campbell, 2012).
Much like what was done for climate covariates (described
above), mid-century (2050s) vegetation projections were
used in the 1.5 and 2.0�C global mean temperature rise pol-
icy scenarios, and late-century (2090s) projections were used
for the 3.0�C global mean temperature rise scenario. Vegeta-
tion projections were the consensus projection across three
CMIP3 GCMs (CGCM3, HadCM3, GFDL CM2.1) model
projections run under two SRES emissions scenarios
(A2 and B1 or B2). Thus, neither the GCMs nor the emis-
sions scenarios for vegetation aligned directly with those for
climate covariates. We included these consensus-based pro-
jections of vegetation distribution because they are the best
available projections at a continental scale, and because the
CMIP3 and CMIP5 projections are more similar than distinct
(Knutti & Sedlá�cek, 2013). We derived terrain ruggedness
from a digital elevation model (Riley, DeGloria, & Elliot,
1999). See Appendix 1 in Supporting Information for further
details on their preparation.

2.2 | Species distribution modeling

Recent work in the field of species distribution modeling has
identified a number of data preparation approaches that
improve model performance and transferability (Boria,
Olson, Goodman, & Anderson, 2014; Peterson et al., 2011;
Radosavljevic & Anderson, 2014). These approaches

TABLE 1 Variables included as predictors in the species distribution
models

Type Variable Season

Climate Hargreave's climatic moisture index Breeding and
nonbreeding

Climate Degree-days below 0�C (chilling
degree days)

Breeding

Climate Degree-days above 5�C (growing
degree days)

Nonbreeding

Climate Mean annual precipitation (mm) Breeding and
nonbreeding

Climate Mean temperature of the coldest
month (�C)

Nonbreeding

Climate Mean temperature of the warmest
month (�C)

Breeding

Climate Number of frost-free days Breeding and
nonbreeding

Climate Precipitation as snow (mm) Breeding and
nonbreeding

Climate Summer heat moisture index Breeding

Environment Topographic roughness index Breeding and
nonbreeding

Environment Anthropogenic land use Breeding and
nonbreeding

Environment Vegetation type Breeding and
nonbreeding
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incorporate species-specific biological information into the
model-construction process, address issues of underlying
sampling bias in the datasets used (Yackulic et al., 2013),
and improve model generalizability by minimizing over-
fitting (Veloz, 2009). Here, we applied some of the latest
approaches in a species-focused modeling process with the
goal of producing the best occurrence model for each spe-
cies, in contrast to one-size-fits-all approaches (e.g., Lawler
et al., 2009).

The modeling process involved data extraction, par-
titioning, and filtering; model construction and evaluation;
and prediction (Figure 1, see Supporting Information Appen-
dix 1 for detailed methods). We applied techniques for
presence-only modeling (Radosavljevic & Anderson, 2014).
Our combined dataset of both structured and unstructured
monitoring data includes inherent sampling bias due to vol-
unteer participation and nonrandom survey locations
(Phillips et al., 2009; Yackulic et al., 2013) which we
addressed in four ways. First, we used target-group back-
ground sampling (Phillips et al., 2009) weighted by the num-
ber of checklists recorded in each grid cell. Second, we
selected background observations from regions occupied by
the species plus a buffer region that a species could have his-
torically experienced through movement (Peterson et al.,
2011). To do this for each species and season, we identified
the Bird Conservation Regions (BCRs, NABCI, http://nabci-
us.org/resources/bird-conservation-regions-map/) into which
these presence observations fell and selected background
data from only those and adjacent BCRs. We assumed that

BCRs captured relevant biological barriers to movement and
that species had experienced adjacent BCRs historically.
This movement-hypothesis approach improves model pre-
diction performance and the generalizability of the species-
environment relationships modeled therein (Boria et al.,
2014). Third, we used a masked geographically structured
approach towards data partitioning (Radosavljevic & Ander-
son, 2014) for rigorous model assessment. Nonrandom spa-
tial structure was added by overlaying a 200-km grid over
the study area and randomly assigning observations from
those areas to training and test datasets (Wenger & Olden,
2012). A 200-km grid was selected after examining the
ranges of semivariograms produced for each environmental
variable and determining that variation leveled off above
200-km. In each bootstrapped dataset, observations from
grid cells assigned to training represented 25% of observa-
tions in that dataset. This modified grid-sampling algorithm
also maintained a constant prevalence between the training
and evaluation datasets (as in Wilsey, Jensen, & Miller,
2016). Finally, we filtered observations using both geo-
graphic (Boria et al., 2014) and environmental (Varela,
Anderson, García-Valdés, & Fernández-González, 2014)
approaches to reduce bias and minimize model over-fitting.
We tested multiple geographic resolutions (1, 10, and
50-km) and numbers of environmental bins (5, 25, 50) for
filtering. We built occurrence models with both boosted
regression trees (Elith & Leathwick, 2014) and Maxent
(Phillips & Dudík, 2008) with the R package dismo
(Hijmans, Phillips, Leathwick, & Elith, 2015), evaluated

Species/ 
Environmental 

Databasea

Single
species
query

Table of 
Observations 

and 
Covariatesb

Data 
Partitioning 

and 
Filteringc

Build and 
Evaluate 
Modelsd

Predict to 
Future 

Projection 
Gridsf

Top Modele
Calculate 

Range 
Change

FIGURE 1 Flowchart for model-based estimates of range stability, gain, and loss used to estimate climate change exposure and sensitivity. See Appendix
1 in the supporting information for detailed methods. (a) Multitable database mapped all observations and environmental data to a common, 1-km grid of
North America. Tables include presences records, sampling locations, environmental covariates, and climate covariates. (b) Observations and covariate table
included only points that fall within the Bird Conservation Regions (BCR) in which the species was observed and any adjacent BCRs. We excluded other
areas of the continent from the analysis. (c) Data were partitioned 25 times into unique spatially stratified (200-km resolution) training and test datasets. We
filtered training data using both geographic and environmental filtering procedures at three resolutions. Test datasets remained unfiltered. The same set of 25
training and test datasets for each species were used across data filtering approaches to allow direct performance comparisons. (d) Boosted regression tree
models were built for each filtering approach and resolution. We built Maxent models for only the best performing geographic and environmental filtering
approach. We based our model evaluation on median AUC across all 25 spatially stratified test datasets. (e) A top-performing model (Maxent or boosted
regression tree and top-performing filtering approach and resolution) was selected for each species. (f) Predictions were based on three GCMs (CCSM4,
GFDL-CM3, and INM-CM4) plus 15-GCM ensemble run under two RCP scenarios (4.5 and 8.5) and for two future time periods (2055, 2085)
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based on median area under the receiver-operator curve
(AUC) across the spatially stratified 25 bootstrapped
datasets, and selected a top model per species looking across
observation filtering approaches, resolutions, and modeling
algorithms (i.e., boosted regression trees vs. Maxent). The
25 bootstrapped training and test datasets were the same for
all models generated for a given species, allowing for direct
comparisons of performance. In total, we built 525 models
for each species for model evaluation testing these assorted
techniques for improving model performance and removing
bias (see Appendix 1 in Supporting Information for further
details).

We generated high-resolution (1-km) predictive occur-
rence maps for each time period, greenhouse gas concentra-
tion trajectory, and GCM. We limited extrapolation by not
projecting to vegetation or land-use classes not included in
the model training datasets. Similarly, we masked from all
current and future climate projections geographically distinct
BCRs for which the modeled current distribution demon-
strated commission error (i.e., over-prediction). These were
primarily BCRs in the Arctic and Mexico and this masking
was done for 13 species in summer and 7 in winter. We
converted projected future suitability into presence/absence
maps by applying a suitability threshold based on the true
skill statistic (Allouche, Tsoar, & Kadmon, 2006) for most
species. However, for three species an alternative suitability
threshold (minimum omission of 10% [Spizella pallida] or
mean prediction value [Rhynchophanes mccownii &
Ammodramus nelsoni]) was selected for which the present
day projection aligned more closely with expert opinion with
minimal decline in model performance (Reside et al., 2019).
For breeding and resident models, we used estimates of
mean natal dispersal (BirdLife International, 2017) and gen-
eration time (Beauchamp, 2009) to generate an estimated

dispersal limit for each future time period. We assumed a
generation time of 1 year when it was unknown
(e.g., Peucaea botterii and Bartramia longicauda). We used
these limits to clip maps of future climate suitability such
that projected distributions reflected biological limits to dis-
persal. Information on nonbreeding site fidelity and move-
ment is often unknown, so we made no modifications to
projected nonbreeding season distributions.

2.3 | Climate change vulnerability assessment

We assessed vulnerability for each of three climate change
exposure scenarios (1.5, 2.0, and 3.0�C increase in global
mean temperature) from projected range loss and potential
expansion (as in Langham, Schuetz, Distler, Soykan, &
Wilsey, 2015; Thomas et al., 2010). To characterize climate
sensitivity, we used range loss (the proportion of the current
range projected to be unsuitable in the future), and assigned
scores from 0 to 3 in increasing order to range losses of
0–25, 25–50, 50–75, and 75–100% (Figure 2). We assessed
adaptive capacity by the ratio of projected range gain to loss.
Limiting future projections by dispersal potential incorpo-
rated an additional element of adaptive capacity beyond
measures of niche breadth and habitat associations captured
in the species' models themselves. We considered species
projected to experience overall range loss to have low adap-
tive capacity and species with overall range gain to have
high adaptive capacity. We then assigned scores between
0 and 3 in decreasing order when the ratio of projected range
gain to loss was >2:1, 1–2:1, 0.5–1:1, and 0–0.5:1, and then
added the two scores for a final vulnerability score
(Figure 2). A species has nonneutral vulnerability if it loses
25% or more of its current range, or does not have potential
to gain back twice the amount of range that is lost.

Adaptive capacity

Proportion range loss

Vulnerability scoring approach

Vulnerability

+ =

Sensitivity

0 0.25 0.50 0.75 1 0 0.25 0.50 0.75 1 0 0.25 0.50 0.75 1
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FIGURE 2 Vulnerability assessments based on model-based estimates of climate exposure and hybrid model-based and trait-based estimates of combined
sensitivity and adaptive capacity. Darker colors correspond to higher vulnerability. We used range loss to characterize climate exposure, and assigned scores
from 0 to 3 in increasing order to range losses of 0–25, 25–50, 50–75, and 75–100%. We used the ratio of range gain to loss to characterize climate sensitivity
and adaptive capacity, and assigned scores between 0 and 3 again in increasing order when the ratio of projected range gain to loss was >2:1, 1–2:1, 0.5–1:1,
and 0–0.5:1. The two scores were then summed for a final vulnerability score
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We treated the number of times in which the vulnerabil-
ity score agreed across individual GCMs and the multimodel
average as a measure of agreement in the assessment. For
comparison, we completed the vulnerability assessment in
the breeding season using maps that were not clipped by dis-
persal limits. Also, we calculated a vulnerability index that
included vulnerability scores based on current population
size and current breeding and nonbreeding range sizes from
the Partners in Flight Landbird Conservation Plan
(Rosenberg et al., 2016). We describe the methods for this
alternative metric in Supporting Information.

3 | RESULTS

Nearly half (42%) of grassland birds were highly vulnerable
during the breeding season under 3.0�C increase in global
mean temperature scenario (Figure 3 and Table 2). This pro-
portion declined to 13% with a 2.0�C increase and to 8%
with a 1.5�C increase. More than 70% of grassland birds
exhibited some degree of vulnerability during the breeding
season under the 3.0�C (76%) and 2.0 and 1.5�C (71%) sce-
narios, such that the number of neutral species remained rel-
atively constant (24–29%). In the nonbreeding season,
climate change vulnerability was much lower with 3–6% of
species highly vulnerable and 41–44% classified as neutral
across all scenarios.

Declining sensitivity to climate change contributed more
than changes in adaptive capacity to lower vulnerability
scores under reduced exposure scenarios (Figure 4). As evi-
dence, the correlation between sensitivity and adaptive
capacity scores in the breeding season was highest for the
3.0�C increase in global mean temperature scenario and
declined with reduced exposure to warming. A similar, but
less pronounced, pattern occurred in the nonbreeding season.
In addition, the proportion of species with declining sensitiv-
ity scores (66 and 26% in breeding/nonbreeding) across sce-
narios exceeded the proportion with declining adaptive
capacity scores (38 and 12% in breeding/nonbreeding).

Three species were highly vulnerable regardless of sce-
nario: Henslow's sparrow (Ammodramus henslowii) and
McCown's longspur (R. mccownii) in the breeding season and
Baird's sparrow (Ammodramus bairdii) in both seasons
(Table 2 and Figure 5). Seven species were projected to lose
more than 95% of their modeled current distribution, including
those listed above plus Bobolink (Dolichonyx oryzivorus),
Chestnut-collared Longspur (Calcarius ornatus), LeConte's
sparrow (Ammodramus leconteii), and Sprague's pipit (Anthus
spragueii).

We assessed the agreement in assigning climate change
vulnerability classes between the multimodel ensemble and
three individual GCMs representing a range of climate
futures for North America. Agreement was generally high
and increased with the magnitude of projected climate
change. In the breeding season, 87–95% of species had
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FIGURE 3 Climate change vulnerability assessment of 38 species of grassland birds under three scenarios for projected future mean global temperature rise
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TABLE 2 Climate change vulnerability scores and agreement across scenarios by species. Vulnerability is assessed as Neutral (N), Low (L), Moderate (M),
or High (H). Agreement is assessed as Low (L), Moderately Low (M-L), Moderately High (M-H), or High (H)

Common name Scientific name Season

Vulnerability Agreement

1.5�C 2.0�C 3.0�C 1.5�C 2.0�C 3.0�C

Aplomado falcon Falco femoralis Breeding L L H M-H M-H M-H

Nonbreeding M M M H M-H M-H

Baird's sparrow Ammodramus bairdii Breeding H H H M-H H H

Nonbreeding H H H H H H

Bobolink Dolichonyx oryzivorus Breeding M M H M-H H M-H

Botteri's sparrow Peucaea botterii Breeding M M H H H M-H

Nonbreeding N N L M-H M-H M-H

Burrowing owl Athene cunicularia Breeding N N N M-H M-H M-H

Nonbreeding N N N M-H H M-H

Cassin's sparrow Peucaea cassinii Breeding N N L M-H M-H M-H

Nonbreeding L M M M-H M-H M-H

Chestnut-collared longspur Calcarius ornatus Breeding M H H L M-H H

Nonbreeding L M M M-H M-H M-H

Clay-colored sparrow Spizella pallida Breeding M M H M-H M-H M-H

Nonbreeding N N N H H H

Dickcissel Spiza americana Breeding N N N H H H

Nonbreeding N N N H H H

Eastern kingbird Tyrannus tyrannus Breeding L M M M-H M-H M-H

Eastern meadowlark Sturnella magna Breeding L L M H M-H H

Nonbreeding N N N M-H H H

Ferruginous hawk Buteo regalis Breeding L M M M-L M-L M-H

Nonbreeding L L M M-L M-H M-H

Grasshopper sparrow Ammodramus savannarum Breeding N N L M-H M-H M-H

Nonbreeding N N N M-H M-H H

Gray partridge Perdix perdix Breeding M M H M-H H M-H

Nonbreeding L L L M-H M-H M-H

Greater prairie-chicken Tympanuchus cupido Breeding M L N H M-H M-H

Nonbreeding N N N M-H H H

Henslow's sparrow Ammodramus henslowii Breeding H H H M-H H H

Nonbreeding N N N H H H

Horned lark Eremophila alpestris Breeding L L L M-H M-H M-L

Nonbreeding L L L H H H

Lark bunting Calamospiza melanocorys Breeding L M H M-H M-H M-H

Nonbreeding L N N H M-H M-H

Le Conte's sparrow Ammodramus leconteii Breeding M M H M-H M-H M-H

Nonbreeding N N N H H H

Lesser prairie-chicken Tympanuchus pallidicinctus Breeding L L M M-H H H

Nonbreeding N L L M-H M-H M-H

Loggerhead shrike Lanius ludovicianus Breeding N N N M-H M-H M-H

Nonbreeding N N N H M-H M-H

Long-billed curlew Numenius americanus Breeding M M H M-H M-H M-H

Nonbreeding N N N M-H M-H H

McCown's longspur Rhynchophanes mccownii Breeding H H H M-H M-H M-H

Nonbreeding L L M H H H

Mountain plover Charadrius montanus Breeding M H H M-L M-H H

Nonbreeding L L L H H H

Nelson's sparrow Ammodramus nelsoni Breeding L M H M-L M-L M-L

Nonbreeding M H H M-H M-L M-H

Northern bobwhite Colinus virginianus Breeding N N N H H H

Nonbreeding N N N M-H M-H H
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medium-high or high agreement across all scenarios. In the
nonbreeding season, 97% of species had medium-high to
high agreement regardless of scenario.

Including dispersal limitations increased the vulnerability
of species. Breeding season vulnerability scores were gener-
ally lower when recalculated without restricting potential

TABLE 2 (Continued)

Common name Scientific name Season

Vulnerability Agreement

1.5�C 2.0�C 3.0�C 1.5�C 2.0�C 3.0�C

Ring-necked pheasant Phasianus colchicus Breeding N N L M-H H M-H

Nonbreeding L L L M-H M-H M-H

Savannah sparrow Passerculus sandwichensis Breeding M M H M-H M-H M-H

Nonbreeding L L L H H H

Scissor-tailed flycatcher Tyrannus forficatus Breeding N N N H H H

Nonbreeding N N N H H H

Sedge wren Cistothorus platensis Breeding M M M M-H M-H M-H

Nonbreeding L N N H M-H M-H

Sharp-tailed grouse Tympanuchus phasianellus Breeding L L L M-H M-H M-H

Nonbreeding L L M H H M-L

Short-eared owl Asio flammeus Breeding M M M M-H M-H H

Nonbreeding N N L H H M-H

Sprague's pipit Anthus spragueii Breeding L M H M-L M-L M-H

Nonbreeding N N N M-H H H

Swainson's hawk Buteo swainsoni Breeding N N N M-H M-H M-H

Upland sandpiper Bartramia longicauda Breeding N N N H H M-H

Vesper sparrow Pooecetes gramineus Breeding L M M M-H M-L M-H

Nonbreeding N N N H H M-H

Western kingbird Tyrannus verticalis Breeding N N N H H H

Nonbreeding N N N M-H M-H M-H

Western meadowlark Sturnella neglecta Breeding L L L M-H H H

Nonbreeding N N N M-H H H

rho=0.63

rho=0.52

rho=0.73

rho=0.65

rho=0.81

rho=0.63
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FIGURE 4 Spearman's rank correlation (rho) between climate change exposure and sensitivity/adaptive capacity scores
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range gains by dispersal capacity, with 32, 24, and 11% of
species highly vulnerable under the 3.0, 2.0, and 1.5�C
increase in global mean temperature scenarios, respectively.
Meanwhile, the proportion of neutral species (24–32%)
remained similar (Supporting Information, Appendix 2). In
addition, climate change vulnerability scores were robust to an
alternative index that incorporated information on current pop-
ulation and range size available for 33 species (see Appendix
2 in Supporting Information). Under the alternative index, 1–6
(3–18%) highly vulnerable species across scenarios dropped
to moderately vulnerable in the breeding season, but did not
change in the nonbreeding season. The vulnerability of four
(12%) species in the breeding season and eight species (27%)
in the nonbreeding season increased from neutral to low.

Final distribution models performed well predicting to spa-
tially independent test datasets. Median AUC across species
models was 0.93 (IQR: 0.87–0.96) in summer and 0.92 (IQR:
0.87–0.95) in winter (see Appendices 2 & 3 in Supporting
Information for more performance results). Median true pres-
ence rates (0.90) exceeded median true negative rates (0.84),
suggesting that models on average defined suitability broadly
to include 90% of all known presence grid cells. Mean annual
precipitation (MAP) was consistently among the most impor-
tant predictor variables across species in summer, followed by
chilling degree days (DD_0) and mean temperature of the
warmest month (MWMT, see Appendices 2 and 3 in
Supporting Information for more results on variable influ-
ence). Precipitation as snow (PAS) was consistently among
the most important predictor variables in winter, followed
by Climatic moisture deficit (CMD).

4 | DISCUSSION

Grasslands are critically endangered globally and an irre-
placeable ecoregion in North America, yet habitat

conversion continues at high rates. We show that climate
change is an emerging threat to grassland birds and that cur-
rent climate change policy commitments are insufficient.
The Paris Agreement framework includes pledged reduc-
tions in greenhouse gas emissions (i.e., Nationally Deter-
mined Contributions) leading to an estimated 3.2�C global
increase in mean temperature (Climate Transparency, 2018;
UN, 2016). Even if these stated goals are achieved, nearly half
of grassland bird species will remain highly vulnerable to cli-
mate change. The IPCC has identified a 2.0�C increase in
global mean temperature as the target to avoid catastrophic
impacts of climate change on human and natural systems
(IPCC, 2013) and recently identified warming of 1.5�C as vir-
tually inevitable by 2030–2052 (IPCC, 2018). Already in
2017, there was a +1.3�C global land temperature anomaly
(NOAA National Centers for Environmental Information
[NCEI], 2018). Our results provide compelling evidence that
for grassland birds there is notable benefit to taking action to
reduce warming from a 3.0 to a 2.0�C increase in global mean
temperature, because it would reduce the proportion of highly
vulnerable birds from 42 to 13%. To do this, we need rapid
and aggressive emissions reductions.

Nine North American grassland bird species included in
this analysis are species of continental conservation concern
(Rosenberg et al., 2016). Of those, seven are highly vulnera-
ble in at least one season under the scenario for a 3�C
increase in global mean temperature (Appendix
2, Table S2). That becomes six species with a 2�C increase,
and three species with a 1.5�C increase. Thus, policies that
reduce climate change will also benefit the most at-risk
grasslands species.

A few CCVAs have been conducted on grassland birds
in North America. These include trait-based assessments
conducted at continental (NABCI, 2010) and global scales
(Foden et al., 2013) as well as model-based assessments
(Langham et al., 2015). Trait-based approaches suggested

FIGURE 5 Projected range change for Baird's sparrow (Ammodramus bairdii) under three scenarios for increase in global mean temperature
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moderate to low vulnerability for grasslands species in the
United States (NABCI, 2010), or high vulnerability for
5 (13%) of the 38 grassland species included in this analysis
(Foden et al., 2013). Langham et al. (2015) identified 32%
of grassland birds in the United States and Canada as highly
vulnerable and 21% as moderately vulnerable. Our vulnera-
bility assessment expanded on existing grassland bird
CCVAs by combining trait- and model-based approaches,
and our results suggest that previous assessments may
under-estimate vulnerability.

This work stands out from previous efforts for the vol-
ume of observation data included, and the extensive use of
spatially structured data partitioning and filtering to improve
model performance and transferability (Radosavljevic &
Anderson, 2014; Veloz, 2009; Wenger & Olden, 2012).
However, the use of citizen science datasets in this assess-
ment and the discrepancies in protocols across datasets may
violate some assumptions of the Maxent and boosted regres-
sion tree models used, resulting in biased models (Yackulic
et al., 2013). In spite of having millions of observation
records, not every grid cell was sampled and there was spa-
tial bias (primarily toward population centers) in those that
were sampled. In addition, individual species' detection
probabilities across species and datasets were not equal to
one and detection was not modeled explicitly, as is common
when modeling occurrence, as opposed to occupancy or
abundance. We acknowledge these limitations, but took
steps described in the methods to minimize their impact.
These included target-group background sampling, data fil-
tering, and spatially stratified cross-validation to address
biases. Also, we chose to model suitability using presence-
only methods, instead of occupancy or relative abundance,
because of the inevitable variation in detection probabilities
across datasets, with field conditions (which are unknown
and not considered in our models), and across vegetation
types. Changes in suitability using the species distribution
model approach correlate with changes in relative abundance
across large geographic regions (Stephens et al., 2016). The
methods we employed are common practice in the Maxent
and species distribution modeling literature
(Radosavljevic & Anderson, 2014). However, it is possible
that alternative approaches, such as distance null-model cali-
brated AUC (Hijmans, 2012), may further improve model
transferability in future species distribution modeling efforts.

Inclusion of vegetation and land-use covariates may also
be sources of error. First, vegetation projections were not
mechanistic and therefore do not reflect the dynamics of
plant range expansion and contraction, likely overestimating
future range gains and under-estimating vulnerability
(Stralberg et al., 2015). Furthermore, vegetation projections
were based on CMIP3 climate projections, which differ from
the CMIP5 projections used for climate covariates. CMIP5
is considered to have improved performance over CMIP3;
but the similarities in the projections exceed the differences

(Sun, Stevens, Buddenberg, Dobson, & Easterling, 2015).
The fact that the vegetation classifications were consensus
projections across multiple GCMs and emissions scenarios
may result in under-estimation of vegetation change under
the 3�C increase scenario and over-estimating vegetation
change under the 1.5�C increase scenario. The challenge of
finding vegetation projections at broad spatial scales lead
many to exclude vegetation from distribution projections
(Langham et al., 2015; Lawler et al., 2009; Stralberg et al.,
2015), to use general assumptions about vegetation lag-times
(Stralberg, Bayne, et al., 2015), or to work with regional pro-
jections (Matthews, Iverson, Prasad, & Peters, 2011). We
opted to include vegetation despite the limitations of avail-
able data. Vegetation was among the top predictors for only
five (13%) and six (15%) species in the breeding and non-
breeding seasons (Appendix 2), suggesting the impact of the
variable was generally small. Vegetation was the single most
important variable for Anthus spragueii and Calcarius
ornatus. However, both of these were already two of the
most vulnerable species, so under-estimation of vegetation
change under the 3.0�C increase scenario would not have
changed their vulnerability classification. Finally, projected
land-use change was not incorporated, likely leading to addi-
tional over-estimation of range sizes.

Combined model- and trait-based vulnerability assess-
ments are an improvement on single-method approaches, but
information gaps remain. Our model-based approach infers
potential for range expansion (i.e., colonization) or contrac-
tion (i.e., extirpation) based on suitability and dispersal
potential, but we did not model colonization or extirpation
processes directly (Yackulic, Nichols, Reid, & Der, 2015).
This can lead to errors, particularly if colonization and
extinction probability respond to covariates that differ from
those used in our distribution models (Yackulic et al., 2015).
Furthermore, some species could adjust breeding phenology
to increase their adaptive capacity to climate change beyond
the projected range shifts modeled here (Socolar, Epanchin,
Beissinger, & Tingley, 2017). Species' distributions may
also be impacted by factors other than climate, such as inter-
specific interactions (Zarnetske, Skelly, & Urban, 2012),
which were not assessed here. Finally, in spite of including
>40 datasets, 10 species had fewer than 50 grid cells with
which to build a distribution model (Appendix 3). All but
one of these are winter distributions concentrated in Mexico.
Model performance was still acceptable in spatially stratified
cross validation (e.g., >70% presences correct) and similar
models have been published elsewhere (Costa et al., 2010),
but more occurrence data would improve the confidence in
the vulnerability assessment for these species.

Finally, it is relevant to note that there is a potentially
synergistic effect between climate policies to reduce green-
house gas emissions and land-use impacting grasslands. Pol-
icies that advocate for the expansion of renewable fuels may
result in grassland conversion. For example, renewable fuel
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standards resulted in higher rates of grassland conversion
regionally, including 1.5 million ha of converted grasslands
within 100 miles of refineries in the Midwestern United
States (Wright, Larson, Lark, & Gibbs, 2017). This occurred
in spite of the existence of voluntary programs for grassland
conservation in the United States like the Conservation
Reserve Program (www.fsa.usda.gov), the Agricultural Con-
servation Easement Program, and the Crop Production on
Native Sod program (www.ers.usda.gov), which have helped
stabilize the decline in grassland bird populations (NABCI,
2017). Most present-day grasslands conversion are lands
taken out of CRP (Lark et al., 2015; Morefield, LeDuc,
Clark, & Iovanna, 2016) highlighting the precarious nature
of conservation gains from voluntary programs (Wright
et al., 2017). Programs like the Land and Water Conserva-
tion Fund (www.doi.gov/lwcf), which distributes federal
revenue from oil and gas development to land conservation
programs that include acquisitions, easements, and enhance-
ments of grasslands among other habitats, may be more
effective at protecting grasslands. Lessons can be learned
from the Amazon where programs that linked payments for
ecosystem services (e.g., carbon credits) with anti-
deforestation campaigns were most successful (Nepstad
et al., 2014) at reducing deforestation.

In conclusion, this work represents a comprehensive
effort at assessing climate change vulnerability for an at-risk
species group. Nearly one-half of grassland birds are highly
vulnerable to climate change under our current global green-
house gas emissions trajectory. Grassland birds need aggres-
sive policy action to reduce greenhouse gas emissions while
continuing to limit additional grassland conversion.
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