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ABSTRACT Occupancy estimation is an effective analytic framework, but requires repeated surveys of a
sample unit to estimate the probability of detection. Detection rates can be estimated from spatially replicated
rather than temporally replicated surveys, but this may violate the closure assumption and result in biased
estimates of occupancy. We present a new application of a multi-scale occupancy model that permits the
simultaneous use of presence–absence data collected at 2 spatial scales and uses a removal design to estimate
the probability of detection. Occupancy at the small scale corresponds to local territory occupancy, whereas
occupancy at the large scale corresponds to regional occupancy of the sample units. Small-scale occupancy
also corresponds to a spatial availability or coverage parameter where a species may be unavailable for
sampling at a fraction of the survey stations. We applied the multi-scale occupancy model to a hierarchical
sample design for 2 bird species in the Black Hills National Forest: brown creeper (Certhia americana) and
lark sparrow (Chondestes grammacus). Our application of the multi-scale occupancy model is particularly well
suited for hierarchical sample designs, such as spatially replicated survey stations within sample units that are
typical of avian monitoring programs. The model appropriately accounts for the non-independence of the
spatially replicated survey stations, addresses the closure assumption for the spatially replicated survey
stations, and is useful for decomposing the observation process into detection and availability parameters.
This analytic approach is likely to be useful for monitoring at local and regional scales, modeling multi-scale
habitat relationships, and estimating population state variables for rare species of conservation concern.
� 2011 The Wildlife Society.

KEY WORDS availability probability, closure assumption, detection probability, hierarchical model, monitoring,
multi-scale, occupancy estimation, point count, Pollock’s robust design, removal design.

Estimating the proportion of sites occupied by a species is
important for answering a wide variety of questions in ecol-
ogy and conservation biology (MacKenzie et al. 2006).
Occupancy models accounting for the incomplete detection
of species represent a significant methodological advance-
ment (MacKenzie et al. 2002, Tyre et al. 2003) and are
gaining wide use in applied ecology. In studies of metapop-
ulation biology, occupancy rates are necessary for estimating
extinction and colonization probabilities (Hanski 1998,
Moilanen 2002, MacKenzie et al. 2003). Occupancy estima-
tion is also a useful framework for studying disease ecology
(McClintock et al. 2010), habitat relationships (Gu and
Swihart 2004), and resource selection (MacKenzie 2006).
Finally, the proportion of sites occupied is a useful state
variable for the adaptive management of wildlife populations

(Yoccoz et al. 2001, Martin et al. 2009) and large-scale
population monitoring for detecting a change or trend in
the population state over time (Thompson et al. 1998,
Manley et al. 2005). In both cases, valid inference of a
population state in any given year requires a probabilistic
sample design and the estimation of detection probabilities
(Yoccoz et al. 2001, Pollock et al. 2002, Rosenstock et al.
2002, Kéry and Schmidt 2008).

Occupancy estimation is particularly well suited for moni-
toring populations of rare species relative to other state
variables and estimation methods (MacKenzie et al. 2005,
Joseph et al. 2006). However, rare species present formidable
challenges for both spatial sampling and estimating detection
probabilities (MacKenzie et al. 2005). Rare species by defi-
nition occupy small fractions of the landscape, but it may be
informative to distinguish between species that that are
locally common and those that are locally rare. In addition
to low detection probabilities (MacKenzie et al. 2005), the
low availability of rare species in large sample units may lead
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to less than desired coverage probabilities (Nichols et al.
2009).

Sample designs for occupancy estimation require repeated
surveys of a sample unit to estimate the probability of detec-
tion (MacKenzie et al. 2006). The repeated surveys may be
represented by temporal replication at discrete time occa-
sions, spatial replication at separate locations, or by the
replication of different observers (MacKenzie et al. 2006).
Estimating detection from spatially replicated surveys on a
single visit may be advantageous to large-scale monitoring
programs when budget or logistical constraints preclude
multiple repeat visits in time. However, under certain sam-
pling situations, estimating detection from spatially replicat-
ed surveys can violate the closure assumption and result in
biased estimates of occupancy (Kendall and White 2009,
Hines et al. 2010). The closure assumption for estimating
the probability of detection is conditional on the presence of
the species and implies that the sample unit is either occupied
or unoccupied for all surveys (MacKenzie et al. 2006, Rota
et al. 2009). When the sample unit is occupied and a fraction
of the spatially replicated surveys have negligible probabili-
ties of detecting the species, the estimate of detection is
biased low and the estimate of occupancy is biased high
(Kendall and White 2009). This lack of closure creates a
dependency between the spatially replicated surveys that is
manifested by the incomplete availability of the species at the
survey locations (Kendall and White 2009). The lack of
closure associated with the spatial replication of surveys
can be addressed through design- or model-based method-
ology. For example, the bias can be removed by sampling
spatially replicated subunits with replacement (MacKenzie
et al. 2006, Kendall and White 2009). Alternately, bias can
be removed by using the robust design parameterization that
allows replicated surveys to be open to changes in occupancy
(Rota et al. 2009), and by decomposing the observation
processes into detection and availability probabilities
(Hines et al. 2010). The spatial replication of survey stations
within sample units is a feature of many sample designs for
avian monitoring (Robbins et al. 1986, Carlson and
Schmiegelow 2002, Manley et al. 2005, Buckland 2006,
Ferland et al. 2006); therefore, robust methods for estimating
occupancy from such designs are needed.

We apply the multi-scale occupancy model developed by
Nichols et al. (2008) to a hierarchical sample design for avian
monitoring. The model permits the simultaneous use of
presence–absence data at 2 spatial scales, accounts for
non-independence of detections between scales, addresses
the closure assumption for spatially replicated survey sta-
tions, and estimates occupancy at both small and large scales.
The estimate of small-scale occupancy is incorporated as an
availability parameter to account for situations where the
species is present at the sample unit, but unexposed to
sampling at some of the survey stations (Nichols et al.
2008). We introduce a new parameterization of the model,
present example applications for brown creepers (Certhia
americana) and lark sparrows (Chondestes grammacus) in
the Black Hills National Forest, and discuss potential uses
and extensions of the model.

STUDY AREA

We collected bird abundance and occurrence data between
23 May and 14 July 2009 throughout the South Dakota and
Wyoming portions of the Black Hills National Forest, as part
of an ongoing avian monitoring program (White et al. 2010).
The Black Hills National Forest covered an area of
5,390 km2 in South Dakota and 819 km2 in Wyoming,
and both areas were dominated by Ponderosa pine (Pinus
ponderosa) forest.

METHODS

Consider a sample design where N sample units are sub-
sampled by R spatially replicated survey stations to determine
the presence or absence of a species. Although the sample
units may be naturally occurring features such as ponds or
vegetation patches, the units may be better represented by
quadrats selected from a predefined area using a probabilistic
sample design. The occupancy state of the spatially replicated
survey stations may vary by location, but it may be reasonable
to assume the occupancy state of each individual survey
station does not change during the course of the study.
Each sample unit consists of R primary survey stations,
for which the occupancy state may be open to vary spatially.
At each primary survey station, investigators use appropriate
methodology to detect the species at K repeated surveys of
the station. This can be considered a within-season (Nichols
et al. 2008) robust design (Pollock 1982, MacKenzie et al.
2003), where the K surveys are the secondary occasions
nested within each of the R primary survey stations. The
occupancy framework presented here differs from that of
MacKenzie et al. (2003) in that we do not make inference
about extinction or colonization, but instead estimate occu-
pancy at 2 spatial scales (Nichols et al. 2008). For example,
consider a study with R ¼ 4 survey stations, K ¼ 3 survey
occasions, and an encounter history Hi ¼ 010 101 000 001
(where 0 ¼ non-detection and 1 ¼ detection during 3 sur-
vey occasions at 4 stations). In this example, the target species
was detected at survey station 1 on occasion 2, at station 2 on
occasions 1 and 3, was not detected at station 3, and was
detected at survey station 4 on occasion 3. When the survey
occasions are sampled without replacement, the robust de-
sign can be combined with a removal design (MacKenzie
2006, Rota et al. 2009). Under this design, surveys for the
species stop after the first detection and the survey stations
are removed from the set that are actively being surveyed
(MacKenzie et al. 2006). The survey occasions following the
first detection can be considered a form of missing data
(MacKenzie et al. 2006), and accordingly the above encoun-
ter history can be written as Hi ¼ 01. 1.. 000 001 .

The multi-scale occupancy model applied in this study was
originally developed for use with multiple remote sampling
devices (Nichols et al. 2008). Our application of the model
differs from that of Nichols et al. (2008) in that we estimate
small-scale occupancy using spatial rather than temporal
replicates. The parameters of the model are as follows:
pt is the probability of detection at occasion t given
the sample unit and survey station is occupied; ur is the
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probability of occupancy for survey station r given the sample
unit is occupied; and ci is the probability of occupancy for
sample unit i. The assumptions of the multi-scale occupancy
model are 1) no un-modeled heterogeneity in the probabili-
ties of detection and occupancy, 2) each survey station is
closed to changes in occupancy over the sampling period,
3) the detection of species at each survey station are inde-
pendent, and 4) the target species are never falsely detected
(MacKenzie et al. 2006). Because the removal design
requires a constrained parameterization where detection is
held constant across survey occasions, an additional assump-
tion for the removal design is a constant per minute proba-
bility of detection in each interval (MacKenzie et al. 2006).

Heterogeneity in detection probability can result in nega-
tively biased occupancy estimates (MacKenzie et al. 2006).
When detection rates vary over the course of the sampling
season and the spatially replicated surveys for each sample
unit are conducted on a single day, a form of heterogeneity in
detection probability may be induced (MacKenzie et al.
2006). An additional form of heterogeneity may occur
when detection varies over the course of the day and the
spatially replicated surveys are conducted at different times
of day (MacKenzie et al. 2006). Therefore, when spatial
replicates are sampled on a single day or at different times
of day, studies should be designed to ensure sampling occurs
over time periods when detection probabilities are not
expected to vary. For example, sampling designs for landbirds
are often restricted to pre-fledgling periods and early morn-
ing hours when singing males are actively courting and
defending territories. Alternately, when the mechanisms
that drive changes in detection are well understood, hetero-
geneity in detection probabilities can be accommodated
and modeled as a function of environmental covariates
(MacKenzie et al. 2006). The removal design is well suited
for situations where the survey occasions are not indepen-
dent, and where species are more or less likely to be detected
in subsequent survey occasions (MacKenzie et al. 2006). The
assumption of a constant per minute probability of detection
in the intervals can be verified by a decline in the frequency of
detections through time after setting all subsequent sample
intervals following the first detection to missing data.

The occupancy parameters c and u allow the estimation of
occupancy at 2 spatial scales (Nichols et al. 2008). The
parameter c represents species occurrence at the larger scale,
and can be interpreted as the proportion of sample units
occupied. The parameter for the smaller scale, u, corresponds
to species occurrence at the survey stations conditional on
species presence at the sample unit, and can be interpreted as
the proportion of survey stations occupied when the sample
unit is occupied. The parameter u accounts for circumstances
in which member(s) of the species may be present at some
survey stations, but not at others. The product cu corre-
sponds to the probability of small-scale occupancy, which
indicates the extent to which members of the species are
present at the survey stations and exposed to sampling
(Nichols et al. 2008). The product c(1 � u) represents
large-scale, but not small-scale occupancy (Nichols et al.
2008). Although u in the original application accounts for

situations when a species is temporarily unavailable due to
movement (Nichols et al. 2008), in the present application u

corresponds to a spatial availability parameter where species
may be unavailable for sampling at a fraction of the survey
stations. Availability in this context corresponds to a cover-
age probability or the extent that an animal(s) home range or
territory at least partially overlaps a sample unit (Nichols
et al. 2009). The estimates of u could be influenced by a
number of factors including territory size, local population
density, and habitat heterogeneity.

We used the multi-scale model to decompose the observa-
tion process into availability and detection probabilities
(Nichols et al. 2009, Hines et al. 2010, Riddle et al.
2010). The value (1 � u) represents the probability of no
availability given presence, u(1 � p) corresponds to the
probability of no detection given presence and availability,
and up reflects the probability of detection given presence
and availability. This parameterization relaxes the closure
assumption for the spatially replicated survey stations and
allows some survey stations to have negligible probabilities of
detection.

We defined the sampling frame by superimposing a
1 km � 1 km grid over the Black Hills National Forest.
We used a stratified random design and selected 46 sample
units in South Dakota and 10 sample units in Wyoming
using generalized random-tessellation stratification (Stevens
and Olsen 2004) and R software (SPSURVEY package, R
Version 2.13.1, www.R-project.org, accessed 6 Mar 2011).
Each 1–km2 sample unit contained 16 survey stations
(R ¼ 16) separated by 250 m. The sample units were sur-
veyed on a single day during the avian breeding season from
23 May through 14 July 2009. We sampled avian occurrence
using 5-min point counts (Reynolds et al. 1980) between
one-half hour before sunrise and 1100 hr at each accessible
survey station, and measured the distance to each bird de-
tection using a laser rangefinder. The repeated sample occa-
sions K at each survey station were represented by the 1-min
intervals comprising the point count duration. Using the 5 1-
min intervals recorded during sampling, we binned minutes 1
and 2, and minutes 3 and 4, resulting in 3 sample occasions of
different interval length (K ¼ 3). We binned the minute
intervals to maintain a constant detection rate in each interval
and ensure a monotonic decline in the detection frequency
histogram through time. Binning the intervals improved
irregularities in the detection frequency histogram due to
time lags between detecting and recording species when
sampling diverse bird communities (Celis-Murillo et al.
2009). We used a removal design (MacKenzie et al. 2006,
Rota et al. 2009) and surveyed avian occurrence until the first
detection, after which we set all subsequent sample intervals
to missing data. We truncated the data and used only detec-
tions within 125 m of the sample points (half of the distance
between survey stations). The frequency of song detections
declined over the 3 time intervals for both species, but the
frequency histogram for the brown creeper exhibited a fatter
tail in the later intervals than that of the lark sparrow.

We fitted a single model with 2 groups to estimate brown
creeper or lark sparrow occupancy in the South Dakota and
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Wyoming portions of the Black Hills National Forest. We
modeled detection probability (p) as constant over time and
strata. The removal design prevented the estimation of time
specific detection rates (MacKenzie et al. 2006). Because we
detected brown creepers on only 4 and lark sparrows on only
3 survey stations in the Wyoming stratum, we considered the
data too sparse for estimating stratum specific detection
probabilities. As in the previous analysis example, we held
small-scale occupancy (u) constant across the 16 survey
stations because differences between the numbered survey
stations had no biological relevance. As with the detection
parameter, we considered the data too sparse to estimate
stratum specific u. We fitted the model, accounted for un-
equal interval length and obtained maximum likelihood
estimates of the parameters using SAS software (PROC
NLMIXED; SAS/STAT Version 9.2; SAS Institute, Inc.,
Cary, NC; Appendix). The unequal time intervals were
accommodated by raising the probability of not being
detected (1 � p) to the power of the length of the time
interval, and the resulting detection probability was 1 minus
the probability of not being detected [1 � (1 � p)2 for a
species detected in an interval length of 2 min] (Appendix).
Overall large-scale occupancy (c) in the Black Hills National
Forest was estimated by ĉ ¼ fSD � ĉSD þ fWY � ĉWY,
where fSD and fWY were the relative proportions of sample
units in the South Dakota and Wyoming strata, and ĉSD and
ĉWY were the occupancy estimates for the South Dakota and
Wyoming strata, respectively. We approximated the sam-
pling variance and standard error of the overall large-scale
occupancy estimate using the delta method (Powell 2007)
and SAS software (PROC IML, SAS/IML Version 9.2).

RESULTS

We detected brown creepers at 16 survey stations, at 8 sample
units in South Dakota and 2 sample units in Wyoming. The
estimated detection probability using the removal design was
p̂ ¼ 0.28, which approached the moderate range where un-
biased estimates of occupancy are expected (MacKenzie et al.
2002). Brown creepers occupied 11% of the survey stations
when present at the sample units ðûÞ and 27% of the sample
units ^ðcÞ in the Black Hills National Forest (Table 1),
indicating that small-scale occupancy was considerably lower
than large-scale occupancy. This means that brown creepers
were locally rare, but occupied a relatively larger fraction of
the landscape. The naı̈ve estimate of large scale occupancy
of brown creepers was 0.18 and therefore the adjusted
occupancy estimate accounting for incomplete detection
and availability (ĉ ¼ 0.27) was 50% greater than the naı̈ve
estimate. The relatively large false absence rate was primarily
due to the low availability of brown creepers at the survey
stations. This suggests brown creepers have a high probabil-
ity of being overlooked at the sample unit because they
occupied only a small proportion of survey stations when
present at the sample unit.

We detected lark sparrows at 30 survey stations, at 9 sample
units in the South Dakota stratum and at 2 sample units in
the Wyoming stratum. The removal estimate of detection for
the lark sparrow was p̂ ¼ 0.37. Lark sparrows occupied 32%

of the survey stations when present at the sample units ðûÞ
and 20% of the sample units ðĉÞ in the Black Hills National
Forest (Table 1). This means that lark sparrows were rela-
tively common at the local scale, but occupied a smaller
fraction of the landscape. The naı̈ve estimate of large scale
occupancy for lark sparrows was 0.196. Therefore, the ad-
justed occupancy estimate accounting for incomplete detec-
tion and availability (ĉ ¼ 0.200) was 2% greater than the
naı̈ve estimate. The low false absence rate was primarily due
to the relatively high availability of lark sparrows at the
sample stations. In other words, lark sparrows were unlikely
to be overlooked at the sample units because they occupied a
relatively large proportion of sample stations when present at
the sample unit.

DISCUSSION

Our application of the multi-scale occupancy model was
useful for decomposing the observation process into avail-
ability and detection components as well as addressing the
closure assumption for spatially replicated survey stations.
Accounting for incomplete detection is an important con-
sideration for wildlife monitoring programs (Thompson
et al. 1998, Yoccoz et al. 2001, Pollock et al. 2002, Kéry
and Schmidt 2008). The detection process may be decom-
posed into several components (Nichols et al. 2009, Hines
et al. 2010, Riddle et al. 2010), including spatial availability
(species may not be exposed to sampling at all surveys
stations) and detection (exposed species may go undetected).
Certain species, such as the brown creeper in the present
study, occur infrequently at the spatially replicated survey
stations and are therefore more likely to be missed during
sampling. The multi-scale occupancy model developed by
Nichols et al. (2008) effectively adjusts the estimate of
large scale occupancy upward to account for the incomplete
availability of species within the sample units. The availabil-
ity parameter in this context corresponds to a coverage

Table 1. Parameter estimates, standard errors (SE), coefficients of variation
(CV), and lower (LCL) and upper (UCL) 95% confidence limits for brown
creeper and lark sparrow occupancy, 23 May to 14 July 2009 in the Black
Hills National Forest, South Dakota and Wyoming, USA. Psi ðĉÞ is the
estimate of large-scale occupancy for 1-km2 sample units in the Black Hills
National Forest estimated using the delta method. The parameters ĉSD and
ĉWY are the estimates of large-scale occupancy for the South Dakota and
Wyoming portions of the Black Hills National Forest. Theta ðûÞ is the
forest-wide estimate of small-scale occupancy for 4.9-ha plots surrounding
the point count locations. The parameter p̂ is the removal estimate of
detection probability estimated from the binned minute intervals.

Parameter Estimate SE CV LCL UCL

Brown creeper
ĉ 0.27 0.09 0.34 0.08 0.45
ĉSD 0.26 0.10 0.37 0.11 0.50
ĉWY 0.30 0.20 0.66 0.06 0.74
û 0.11 0.05 0.42 0.04 0.25
p̂ 0.28 0.15 0.51 0.08 0.63

Lark sparrow
ĉ 0.20 0.05 0.27 0.09 0.31
ĉSD 0.20 0.06 0.30 0.10 0.35
ĉWY 0.21 0.13 0.63 0.05 0.58
û 0.32 0.06 0.19 0.21 0.45
p̂ 0.37 0.10 0.27 0.19 0.58
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probability or the extent that an animal(s) home range or
territory at least partially overlaps a sampling unit (Nichols
et al. 2009). We suggest the robust design parameterization
relaxes the closure assumption for the spatially replicated
survey stations and allows some survey stations to have
negligible probabilities of detection (Kendall and White
2009). This parameterization accounts for incomplete avail-
ability at the survey stations and adjusts the estimate of u for
incomplete detection (Nichols et al. 2008), which may reduce
the negative bias in p and positive bias in c that results from
applying the standard occupancy model to spatially replicated
subunits (Kendall and White 2009). The theory underlying
the model addresses the lack of closure associated with the
spatial replication of subunits (Nichols et al. 2008), but
simulations to evaluate the performance of the model is
an area of further research. In tandem with the removal
design, the model allows the estimation of detection and
occupancy parameters from a single field visit to the sample
unit. In the case of equal minute intervals, the multi-scale
occupancy model can easily be fit in programs MARK
(MARK Version 6.1, www.phidot.org, accessed 14 Jun
2010) and PRESENCE (PRESENCE Version 3.1,
www.mbr-pwrc.usgs.gov, accessed 11 Apr 2011).

In the analysis examples, we used multi-scale occupancy
estimation to make inference about site occupancy at 2 spatial
scales. Each survey station covered an area of 4.9 ha and the
occurrence of bird species at the small scale was considered to
be territory occupancy. When the sample units are approxi-
mately the size of a territory, occupancy can be interpreted as
abundance or the number of territories (MacKenzie et al.
2006). The published accounts of territory size ranged from
0.01 ha to 6.4 ha for the brown creeper (Hejl et al. 2002) and
0.01 to 6.0 ha for the lark sparrow (Martin and Parrish
2000). Because the area sampled by the survey stations
approached the maximum territory size for the 2 species,
we considered small scale occupancy an estimate of the
minimum number of occupied territories within the sample
unit. We interpreted large scale occupancy of the 1-km2

sample units as regional occupancy or the fraction of the
landscape occupied by a species. In the analysis examples, the
estimates of large-scale occupancy for brown creepers and
lark sparrows were similar, but the estimates of small-scale
occupancy for these species were considerably different
(Table 1). The brown creeper demonstrated low small-scale
occupancy when present at the sample units (û ¼ 0.11,
1.8 territories), whereas the lark sparrow showed higher
small-scale occupancy (û ¼ 0.32, 5.1 territories; Table 1).
Although the least abundant species also tend to be the least
widespread (Gaston and Lawton 1990), the correlation be-
tween local abundance and regional occupancy may be an
artifact associated with sampling rare species (Wright 1991).
As mentioned above, the multi-scale occupancy model is
particularly useful for accounting for incomplete detection
and availability that arise when sampling rare species. Species
inhabiting discontinuous habitats, such as lark sparrows in
patchy grasslands of the Black Hills National Forest, are
expected to show high local abundance and low regional
occupancy (Gaston and Lawton 1990) Alternately, species

with low local abundance and low regional occupancy, such
as the brown creeper, face double jeopardy and are vulnerable
to habitat alteration at local and regional scales (Lawton
1993). In particular, low local abundance may identify species
at risk of future declines in regional occupancy (Zuckerberg
et al. 2009).

The multi-scale occupancy model developed by Nichols
et al. (2008) is particularly well suited for hierarchical sample
designs, such as spatially replicated survey stations within
sample units that are typical of avian monitoring programs
(Robbins et al. 1986, Carlson and Schmiegelow 2002,
Manley et al. 2005, Buckland 2006, Ferland et al. 2006).
The estimation of occupancy at multiple scales and sampling
variance at each level of the hierarchy requires careful con-
sideration of the independence of the spatially replicated
survey stations. In our application of Nichols et al. (2008)
multi-scale occupancy model, small-scale occupancy is esti-
mated assuming the conditional independence of the spa-
tially replicated survey stations. That is, the spatially
replicated survey stations are independent conditional on
the occupancy state of the sample unit. The multi-scale
occupancy model allows the simultaneous use of presence–
absence data at 2 spatial scales and appropriately accounts for
the non-independence of the spatially replicated survey
stations.

MANAGEMENT IMPLICATIONS

We anticipate the multi-scale occupancy model will be useful
for monitoring wildlife populations at local and regional
scales, modeling multi-scale habitat relationships, and esti-
mating population state variables for rare species of conser-
vation concern. Large-scale monitoring programs have been
criticized for the inability to provide information on the
status of wildlife populations at local scales most relevant
to land management agencies (Downes et al. 2005, Sauer and
Knutson 2008). Monitoring occupancy at small and large
scales offers the potential to evaluate changes in the popula-
tion state in terms of local territory occupancy and regional
occupancy. Estimating the proportion of sites occupied at
2 spatial scales may be useful for linking population responses
to habitat conditions at local and landscape scales. Because
population responses to habitat conditions are scale depen-
dent, the management of wildlife habitats must be imple-
mented at multiple spatial scales (Block et al. 2001, George
and Zack 2001). Evaluating the effects of management
activities and habitat modification on species occurrence at
multiple scales may prove useful for prioritizing conservation
efforts at local management unit and ecoregional scales.
Rare species present formidable challenges for sampling,
monitoring, and ultimately the conservation of populations.
These are species for which strong inference on population
parameters are most needed and are species for which such
information is most difficult to obtain (MacKenzie et al.
2005). By distinguishing between species that are locally rare
and those that are locally common, multi-scale occupancy
estimation may provide a more comprehensive understand-
ing of patterns of occurrence for rare species. The ability to
use occurrence data at the level of the survey station allows
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larger sample sizes for estimating detection than can be
realized at the level of the sample unit. At the local scale,
the application examples for the Black Hills National Forest
provided estimates of territory occupancy for low density,
species of conservation concern. The brown creeper is a U.S.
Forest Service Management Indicator Species and both birds
are Wyoming Partners in Flight species of conservation
concern (Priority II). At the ecoregional scale, the multi-
scale occupancy model has recently been used to estimate
population state variables for 11 rare species of conservation
concern throughout the Badlands and Prairies Bird
Conservation Region (White et al. 2010).
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Appendix. SAS code for estimating the parameters of the multi-scale occupancy model (PROC NLMIXED; SAS/

STAT Version 9.2; SAS Institute, Inc., Cary, NC).

%let NumPoints=16;  * Number of points surveyed within a block (1 km^2); 

%let NumIntervals=3;  * Number of intervals surveyed at a point; 

%let NumPsiGroups=2; * Number of groups (psi estimates);  

%let IntLen1=2;  * Number of minutes in first interval; 

%let IntLen2=2;  * Number of minutes in second interval; 

%let IntLen3=1;  * Number of minutes in third interval; 

%let IntLen4=1;  * Number of minutes in fourth interval; 

%let IntLen5=1;  * Number of minutes in fifth interval; 
%let EncHistLen=%eval(&NumPoints*&NumIntervals+1); 

title 'Multi-scale Occupancy Model'; 

data EncHist; 
 array Groups{&NumPsiGroups} Freq1-Freq&NumPsiGroups; 

 length HISTRY $ &EncHistLen; *length should be 1 more than the number 

of characters in the encounter history; 

* Have to edit this statement to read the psi groups; 

 input ID $ 1-17 HISTRY $ 20-68 Freq1 69-69 Freq2 71-71; 

 freq=max(Freq1,Freq2); 

/* 

         1         2         3         4         5         6         7         

8         9         0         1 

12345678901234567890123456789012345678901234567890123456789012345678901234567

890123456789012345678901234567890 */ 

 cards;  * Brown creeper data; 

/*SD-BCR17-BH11*/  1..000......00000000000000000000000001.000000000 1 0 

/*SD-BCR17-BH12*/  000000000000000000000000...000000000...000000000 1 0 

/*SD-BCR17-BH13*/  ...000000000...000000......000000000...000000000 1 0 

/*SD-BCR17-BH14*/  000000......000000.............................. 1 0 

/*SD-BCR17-BH15*/  000000......000.........000.........000000...... 1 0 

/*SD-BCR17-BH16*/  000000000...000...000...000000000...000000000... 1 0 

/*SD-BCR17-BH17*/  ............000000000000000000000000...000000... 1 0 

/*SD-BCR17-BH18*/  000000000...000000000000000000...000000000000000 1 0 

/*SD-BCR17-BH19*/  000000000000000......000000......000000000000000 1 0 

/*SD-BCR17-BH02*/  000000000000000000000000000000000000000000000000 1 0 

/*SD-BCR17-BH20*/  ...1..000000000......000000......0001..00001.000 1 0 

/*SD-BCR17-BH22*/  .........000.........000......000000......000000 1 0 

/*SD-BCR17-BH23*/  000.........000000000000000000...000...000000000 1 0 

/*SD-BCR17-BH24*/  000...000000000...0001..000...000000...000000000 1 0 

/*SD-BCR17-BH25*/  .....................000......000000...000...... 1 0 
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/*SD-BCR17-BH26*/  000000000000000000...000000000000000000000000000 1 0 

/*SD-BCR17-BH27*/  000000000000000000000000000000000000000000000000 1 0 

/*SD-BCR17-BH28*/  000000000000000......000000......000000000...... 1 0 

/*SD-BCR17-BH29*/  01.0000000000000000000000000000000000001..000000 1 0 

/*SD-BCR17-BH03*/  ......000000......000000......000000......000000 1 0 

/*SD-BCR17-BH30*/  000000......000000......000000......000000...... 1 0 

/*SD-BCR17-BH31*/  ...000000000...000000000...000000000...000000000 1 0 

/*SD-BCR17-BH32*/  000000000...000000000...000000000000000000000000 1 0 

/*SD-BCR17-BH33*/  000000000000000000000000000000000000000000000000 1 0 

/*SD-BCR17-BH34*/  0000000000001..000000000000000000000000000000000 1 0 

/*SD-BCR17-BH36*/  ......000000.........000.........000......000000 1 0 

/*SD-BCR17-BH37*/  000000000000000000000000000......000000000000000 1 0 

/*SD-BCR17-BH38*/  ...000000000000000000000000000000000000000000000 1 0 

/*SD-BCR17-BH39*/  1..000000000000000000000........................ 1 0 

/*SD-BCR17-BH04*/  000.........000000...000000000000000.........000 1 0 

/*SD-BCR17-BH40*/  000000000000000000000000000000000000000000000000 1 0 

/*SD-BCR17-BH41*/  000000000...000000000...000000000...000000000000 1 0 

/*SD-BCR17-BH42*/  0000000000000000000001..000000000000000000000000 1 0 

/*SD-BCR17-BH44*/  000000000000000000000000000000000000000000000000 1 0 

/*SD-BCR17-BH45*/  000000000000000000000000000000000000......000000 1 0 

/*SD-BCR17-BH47*/  000000000000000000000...000000.................. 1 0 

/*SD-BCR17-BH48*/  .................................000000000000000 1 0 

/*SD-BCR17-BH49*/  000000000000000000000000000000000000000000000000 1 0 

/*SD-BCR17-BH05*/  000000.........000000........................... 1 0 

/*SD-BCR17-BH50*/  000000000000000000000000000000000000000000000000 1 0 

/*SD-BCR17-BH51*/  000000000000000000000000000000000000000000000000 1 0 

/*SD-BCR17-BH52*/  000000000000000000000000000000000000000000000000 1 0 

/*SD-BCR17-BH55*/  000000000000000000000000000000000000............ 1 0 

/*SD-BCR17-BH56*/  000000000000000000000000000...000000......000000 1 0 

/*SD-BCR17-BH57*/  001.........000.........000000000000000000000000 1 0 

/*SD-BCR17-BH60*/  000000000000000000000000000000000000000000000000 1 0 

/*SD-BCR17-BH08*/  000000000000000000000...000000.................. 1 0 

/*WY-BCR17-BH01*/  000000...000000000......000000......000000...... 0 1 

/*WY-BCR17-BH10*/  000000000......0000000000000000000001..1..00001. 0 1 

/*WY-BCR17-BH02*/  000000000000000000000000000000000000000000000000 0 1 

/*WY-BCR17-BH03*/  000000000000000......000000.........000......... 0 1 

/*WY-BCR17-BH04*/  .........000.........000.........000.........001 0 1 

/*WY-BCR17-BH05*/  000000000000000000000000000000000000000000000000 0 1 

/*WY-BCR17-BH06*/  000000000000000000000000000000000000000000000000 0 1 

/*WY-BCR17-BH07*/  000000000000000000000000........................ 0 1 

/*WY-BCR17-BH08*/  000000000000000000000000000000000000000000000000 0 1 

/*WY-BCR17-BH09*/  000000000.....................000000...000000000 0 1 
; 
proc contents; 

proc print; 

run; 

proc nlmixed ecov; 

* Multi-scale Occupancy Estimation Nichols et al. (2008) J. Applied Ecology; 

 parms logitdelta=-0.1 logitp1min=-0.1 logitpsi1=-0.1  logitpsi2=-0.1; 

 array CAP{&NumPoints} _temporary_; 
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 array CUM1{&NumPoints} _temporary_; 

 array CUM2{&NumPoints} _temporary_; 

 array IntLen{5} _temporary_; 

 IntLen[1]=&IntLen1; IntLen[2]=&IntLen2; IntLen[3]=&IntLen3; 

IntLen[4]=&IntLen4; IntLen[5]=&IntLen5; 

*   CUM1 = Delta*product of p; 

*   CUM2 = (1 - Delta); 

*   CAP set to 1 for subsites with detection, zero otherwise; 

 do j=1 to &NumPoints; CAP[j]=-1; CUM1[j]=0; CUM2[j]=0; end; 

 if Freq1=1 then Psi=1/(1+exp(-logitpsi1)); 

 else Psi=1/(1+exp(-logitpsi2)); 

 Delta=1/(1+exp(-logitdelta)); 

 p1min=1/(1+exp(-logitp1min)); 

 IOCCAS=0; 

 CELPRB=Psi; 

 SOMEINFO=0; 

 do j=1 to &NumPoints; 

     SOMEINFO=1; 
    end; 
    else do; 

     CUM1[j]=CUM1[j]*(1-(1-(1-p1min)**IntLen[i])); 

    end; 
   end; 

  end; 

  if CAP[j]=-1 then do; * No data for this visit/subsite; 

   CUM1[j]=1; 

   CUM2[j]=0; 

  end; 

  else do; 

   if CAP[j]=1 then do; 

    CUM2[j]=0; 

  CUM1[j]=Delta; 

  do i=1 to &NumIntervals; 

   IOCCAS=IOCCAS+1; 

   if substr(HISTRY,IOCCAS,1)^='.' then do; 

    CAP[j]=MAX(0,CAP[j]); 

    if substr(HISTRY,IOCCAS,1)='1' then do; 

     CAP[j]=1; 

     CUM1[j]=CUM1[j]*(1-(1-p1min)**IntLen[i]); 

   end; 

   else do; 
    CUM2[j]=1-Delta; 
   end; 

  end; 

  CELPRB=CELPRB*(CUM1[j]+CUM2[j]); 

 end; 

 if SOMEINFO=0 then do; 

  CELPRB=CELPRB+(1-Psi); 
 end; 

 model freq ~ general(log(CELPRB)); 

 estimate 'Psi1' 1/(1+exp(-logitpsi1)); 

 estimate 'Psi2' 1/(1+exp(-logitpsi2)); 

 estimate 'Delta' Delta; 

 estimate 'p1min' p1min; 
run; 
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