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EXECUTIVE SUMMARY

The rangewide monitoring program for thesselprairie-chicken 'ympanuchus
pallidicinctug conducted by the Western Association of Fish and Wildlife Agencies plays an
important role in landscape conservation initiatives for the recovery of the sjetasdologies
to evaluatdessermrairie-chicken responses to habitat conditions and conservation practices are
necessary to evaluate the success of these initiatMesdapted thdata collected as part tife
rangewide monitoring prograni2012 2016) to applya multiscale occupancy model basedldn
km x 15km grid cells and.5-km x 7.5km quadrantso meet the following objectives:

1. Quantify therangewide annual variation inthe probability of occupancyof thelesser

prairie-chickenat two spatial salesover thefive years of study

2. ldentify themost important predictors tésser prairiechicken occupancfincluding

anthropogenic land usedroughtrelatedclimatic conditions, conservation actions, and
vegetative landcovethroughout the entire rangadwithin each offour ecoregions

3. Map theprobability oflesser prairiechickenocaupancy rangevide as a function of the

most importanpredictorvariables.

Rangewide, we found that the probability of occupancy at the lagge (15%km x 15km grid
cells) was relatively constant across years at (8% confidence intervat 0.26, 0.36)Given
occupancy of the large grid cele probability of occupancy at the small sc&l&km x 7.5km
guadrantpsoscillatedacross yea, but with no clear trend over tinf@mallscale occupancy was
greatestn the Shortgrass/CRP Mosaic ecoregion (typically between approximateilyd43 and
relative tothe otherthreeecoregions (typically < approximately 0.2ye used model predictigrio
evaluatea priori hypotheses for covariate effects on site occupaneyfound strong positive

relationshipgangewide between occupancy astirubland landcovethe amount of land enrolled



in theConservation Reserve Program (CRiPassland landc@y, and the size of grassland
landcover patcheand these relationships were generally consistent at both scales of occupancy
There was weaker evidena@ngewide of negative relationships between occupancyvaoadland
landcoveror anthropogenicevelopnent We continued the investigation of muditale covariate
relationships within each dbur ecoregionsThe ecoregiorspecific analyses generally agreed with
the results of the rangeide analysis, but provided additional insight into the effect ohdates

that were found to be ecoregaily important Mapping the unconditional probability of small
scale occupancy relative tioeimportantcovariategprovided a spatially explicit representation of
habitat suitability rangavide. Theresults of this wrk provide insight into the rangeide

dynamics of lesser prairighicken occupangysuggesting thgiresencef lesser prairiechickensat
the scales we examinedriedsomewhaby ecoregion, buvas relatively constant ovéive years
Furthermorealthoughour study was observational in nature, our results demonstratbehat
presence of lesser pratghickenswas related tdiumanrelatedlandscape characteristjcs

suggesting the possibility to affect occupancy through management and conservatian effo



INTRODUCTION

The rangewide conservation plan for the lesser praaiecken (LEPCTympanuchus
pallidicinctug outlined threats from habitat loss and fragmentation, climate change, and
anthropogenic development, as well as conservation efforts for species r§&areBelt et al.
2013) The LEPC rangavide monitoringprogramprovides a unified framewok for estimating
long-termpopulation status and trend, aménitoring thesucces®f conservation efforts
(McDonald et al. 2014)Thedata fromthe LEPC rangsvide nonitoring progranwereadaptedo
allow occupancy estimation at the scale ofkitbx 7.5km quadrants nested within each of the
15km x 15km grid cells(Adachi et al. 2015, Hagen et al. 201\8)e developed a series of
covariates to represeatpriori hypotheses for the effects of landscape composition and
configuration, anthropogenic developmeadrpughtrelated climatic conditionsand conservation
effortson LEPCoccupancy patterrest two spatial scalesVe extended thpredictivemulti-scale
occupancy model dfiagen et al(2016 to investigateadditionalcovarate relationship$or all data
collectedfrom 2012 2016 The predictive multscale modelsvere used to investigate secend
order habitat relationshigdohnson 1980, Haukos and Zavaletta 2Qd#)g the theory of
hierarchical habitat ug€ody 1985)where habitat use at the smsdiale (56.25 k) scale is
conditional on habitat use at the lamgmle (225 krf). Therelationships between occupancy and
covariate of interesthave implications for landscaponservatiorat multiple scale§George and
Zack 2001) perhaps suggesting management actions that omitdainor increase¢he range
wide extent of occurrenas LEPC.

Hagen et al. (2016) examuhéhe adaptability obneyear of data fronthe current range
wide aerial surveyMicDonald et al. 2015hereaftefiRW-survey) to estimatd. EPC occupancyat

two scales 15-km x 15-km grid cells and 7-&m x 7.5-km quadrantsestedwithin the larger grid



cells.They evaluatetivo dataset® the first dataset was limited to 2015 ditam the original
RW-surveydesign andthe second dataset was adapted to include repeated temporal replicates
from 2015datato estimate occupandgidagen et al. 2016Yhe probability of ccupancy was
estimated at multiple spatial scafes both datasetd he primary results indicated thaeprsion
was not enhanced significantly when supplemented with repeated temporal replicates (Hagen et al.
2016) For this analysis, we continued to pursue the asakile occupancy modeling effort using
data from the original design of the RS\rveys for tk year2012 2016 which allowed for the
evaluation of annual differences due to extreme variatioinanghtrelatedclimatic conditions.
Hagen et al. (2016) continued atwhducedanexploratory evaluation of theotential of
the multiscaleoccupancy radel to predict the effects of habitat and conservatrantices on
LEPCoccupancysing a limited set of predictive covariat€ontinuingthis effort, we expandd
the predictive covariates to include additional covarittelabitat composition and cfiguration,
anthropogenic developmeii,oughtrelated climatic conditiongnd conservation effortandwe
examingl the effects of the expanded list of covariates over multiple years ofQlatabjectives
were to(1) quantify therangewide annual variation ithe probability of occupancgf the LEPCat
two spatial scalesver thefive years of study(2) identify themost important predictors &EPC
occupancythroughout the entire rangadwithin each offour ecoregios, and(3) map the

probability of LEPC occupancyangewide as a function of the most importgsredicor variables

METHODS
Study Area

The study area spanned the enggttmatedoccupiedrange of théesserprairie-chickenin
2011(8 million ha) including portions ofive U.S. states: Colorado, Kansas, New Mex

Oklahoma, and Texad/cDonald et al. 2014Figurel). Due to expected geographic variation in



LEPC habitats, distribution, and abundance, the studyweassuldividedinto four ecoregiongor
ecoregiorlevel aralyses ShinneryOak Prairie (SOPR), Sand Sagebrush Prairie (SSPR), Mixed

Grass Prairie (MGPR), and Shortgrass/CRP Mosaic (SEGigRrel).
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Data Collection
Covariate development

We derived covariatebat described anthropogenic land uskesughtrelatedclimatic
conditions, conservation actions, and vegetative land@iten spatial scale§225 knf grid cells
and56.25 knf quadrantswithin a Geographic InformatioBystem(see Table A1, Appendix A for
descriptions, sources, and references for covatitsg As possible, thealues of covariagwere
allowed to vary from year to year, meanthg value of arid- or quadrarievel covariatecould
change annually as updated source datasets were avéelablé&% of the grid cell was enrolled in
prescrbed grazing practices one year, but 8% was enrolled in the nextileamver, ovariates
representing primary road density, transmission line density, and landcovesdypesdrom
NLCD (see Table Al) were assumed to be constant throughWimattrbuted the entire sampling
frame of15-km x 15-km grid cells and’.5-km x 7.5-km quadrantsvith the value of each covariate
each yeafor the purpose aihodeling andnapping the occupancy distribution.

Vegetationrelated covariates described both landscapeposition (the percentagéeach
grid cellor quadrantovered by selected vegetation typasd landscape configuration (the mean
patch size of selected vegetation types within a grid cell or quadféatipncluded landscape
composition covariatest both spatial scaleend describingropland, grassland, shrubland,
mesquitgProsopisspp.)woodland easterrred cedafJuniperus virginianawoodland and
wetlandvegetation types (Table AlWe also combined some of our covariatedd¢fnebroader
vegdationrelated groups with biological relevance to LEN: definednative habitat as
grasslandr shrublandvegetatiorclasseanddefinedgeneral habitat as native habjtand
enrolled in theConservation Reserve Progrd@RP), or pasture landg ableAl). Weincluded

covariates describintpe landcoverof woodland with canopy closure >1%, >5&hd>10% (Table



Al). We included landscapepnfiguration covariates anly the large spatialscale (225 krhgrid
cells) andonly thosedescribing thenean patch sizef cropland, grasslandpative habitatand
general habitategetation typeéTableAl).

We considerefive covariates representingthropogenic developmeat both spatial
scales 225 knf grid cells and 56.25 kfrquadranty includingFAA (Federal Aviation
Administration)vertical structures, oil and gasgells, primary roadstransmission linesnd
landcover associated witdmthropogenicevelopmen{TableAl).

We developed covariates to represent conservatiionsat both spatiascales (225 ki
grid cells and 56.25 kfrquadranty including theandcoverof Lesser PrairieChicken Initiative
(LPCI) prescribed grazing practisghe amountandpatch sizeof CRP-enrolled landandthe
amount of lanenrolled inconservation agreemenadministered by thé/estern Association of
Fish and Wildlife AgencieVAFWA; TableA1l). We developed covariatelescriing drought
relatedclimatic conditionsat both spatial scales (225 kgrid cells and 56.25 kfrquadrants)For
each grid cell anglear, we used thd.S. drought monitor taneasure the numbef summer
drought weeks (classified as severe, extreme, or exceptional drought; Table Al) and the number of
spring green weeks (not classified as abnormally dry, moderate, severe, extremepiioredc

drought; Table Al)

Model Justification and Hypotheses

For the second objectiyédentifying the most important predictors bEPC occupancy, &
used predictive models and the method of multiple working hypotk@€sesnberlin 1965)o
evaluatea priori hypotheses fothe effects ofdndscapstructure anthropogenic development,
conservation practiceanddroughtrelated climatic conditionsn site occupancat the scale of

56.25km? quadrantsind 225 krgrid cells We usedpredictive models to evaluate strength of



evidence for covariate relationshigigwo spatial scalefor which the LEPC may respond
differently (Fuhlendorf et al. 2002, Haukos and Zavaletta 2016¢ covariate relationships may
be useful foinforming conservation practices at different spataklesand foridentifying the
habitatfactors that influence the distribution of a spe¢i¢agen et al. 2016, Pavlackiya. 2017)
Thetwo spatial scas represented a continuwvithin second order habitat uédohnson 1980)

and he modeled relationships megpresensuitable habitator the LEPCat the landscape scale
(Haukos and Zavaletta 2016)andscapdevel habitat loss and fragmentation are among the most
importantfactors for the longermpopulation dynamicef the LEPC(Van Pelt et al. 2013, Haukos
and Zavaletta 20167 he primarymanagemenjuestion for landscape structure invalve
distinguishing between tr@mposition and configuratioof habitatto better understand the
relative importance of habitat loss dnalgmentatioron range contraction and expansida the
extent that hbitat fragmentatiois more important than habitat loise negative effects of habitat
loss may beartially offset bymanaging fotarge patch sizes in the landscdlareiva and
Wennergen 1995We used known habitat associatiamfisthe LEPCto develop a speciawiented
approacho investigatehe landscape ecology of the spe¢iBsrner etal. 2001, Fischer and
Lindenmayer 2007)Ve usedatterns of landscape compositide., landcoverof unique
vegetation typego make inference about processes of habitat loss, and patterns of landscape
configuration(i.e., mean patch sizef unique vegetation typet make inference about processes
of habitat fragmentatiotWe investigatedall modelsubsets of the landscape composition
covariates for the smadicale occupanc{6.25 knf scalg andall subsets of the landscape
composition andonfiguration covariates fahelargescale occupanc§225 knf scale Table Al)

to determinewhich aspects dandcovemosaics aréavored by the LEP@ terms ofcore habitat

patch configuratiomndbetweerpatchmatrix composition We predictedandscape configuration



and themeanpatchsizeof grasslandshrublandor native habitatvould beimportant for the site
occupancy of the LEP(QHagen et al. 2016put we were uncertain whether landsatied in CRP
would contribute taore habitat patches tunction asbetweerpatchmatrix habitatWe
hypothesized that LEPC would resporebatively to increases in thendcoverand patch sizef
cropland(Haukos and Zavaletta 201&Ye alsoconsidered an alternatgpothesis that LE@
would respongbositively to landscape heterogendigahrig et al. 2011 )wherein the probability of
occupancy wouldbe highest at intermediate values of croplEmdicoveror patch siz€Ross et al.
2016&). We also investigatedurvilinearresponses for grassland, shrublaat native habitat to
represent hypotheses for landscape heterogeneity invaigimtinear responses suitable habitat
at the landscape scakgnally, we investigategbossibleinteractions betweesacoregion(as a
factor) and continuous landscape composition and configuration covaretasse we
hypothesized that habitatcupancy relationships likely varied by ecoregion

We developedhypotheses foanthropogenidlisturbance sing covariates fovertical
structures, oil ath gaswells, primary road densitytransmission lines, addndcover associated
with anthropogenic developmeritgbleAl). We predicted LEPC occupancy would decline with
increasing antlmpogenicdevelopmen{Bartuszevige and Daniels 2016) addition,we
investigatedspecific anthropogenic threats amgpothesized LEPC occupancy would decline with
increasingil and gas, transmission linendprimary road developmefidagen et al. 2011, Van
Pelt et al. 2013)as well ayerticalstructures

We evaluated hypotheses for conservation efforts ie¢besgionsising covariates for
CRP-enrolled landLPCl-prescribed grazingandWAFWA conservation easemen®e predicted
LEPC occupancy would increaséthvincreasindandcoverof the LPCI core conservation

practicesincludingprescribed grazing ardRP-enrolled landBartuszevige and Daniels 2013,



USFWS 2011, Hagen et al. 201®Je evaluatedhreehypotheses for LEPC responses to GRP
tandem with landscape composition covarigiesdudingthe (1) contributionof CRRenrolled land
to the landcover angatch configuration of general habité) additive area oc€RP-enrolled land
as betweepatch méix habitat,and(3) additive effect of mean patch sizeGRP-enrolled land
Thefirst hypothesisvould be supported hodels containing covariates for general habitat were
supported over models containing covariates for native halpitatlditionto the above hypotheses
we evaluated quadratielationshipgor thelandcoverandpatch size o€CRP-enrolled lando
investigatevhetheroccupancyhas highesat intermediateamounts or sizes of CRéhrolled lands
In addition b independent hypothesés the positive effects of prescribed grazing aAFWA
conservation easementsg mvestigatedvhetherLEPC occupancy increased with the combination
of LPCI prescribed grazing and WAFWA conservation easem@fdgsnvestigated interactions
with theecoregdpn factor and conservation covariates to evalwdietherthe effect ofconservation
effortsvaried byecoregionWe evaluated alinodelsubset of the conservation covariates with the
landscape structure, anthropogenic developmentdiemdjhtrelated dimatic covariates to
evaluate suppofor the relativeeffects of conservation efforts in teeoregions

Because climate changethre Southern Plains is expected to influence the population
viability of the LEPC(Grisham et al2016) we investigated hypotheses for the effects of spatial
and temporal variation in drought dmetrange dynamics of the LEPThe interaction between
spring precipitation and vegetation cover has the potential to influence key population vital rates
such as nest survival and recruitm@atisham et al. 2016YWe predicted that LEPC range
expansion wouldbe correlated with spatial and temporal variation in the numbssrefirought
weeksduring spring (Table Al Drought dumg the summer months may have large influences on

invertebrate prey availabilifand together with extreme temperatures, hpotential consequences
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for recruitment and adult survivéBrisham et al. 2016We hypothesized that LEC range
contraction may be correlated with the spatial and temporal variation in the number of drought
weeks in the sumer (Table Al). We evaluated hypotheses for interactions betweedrtheght
relatedcovariatesandcovariates describingndscape staiure and conservatiaffortsto

undersand mechanisms for range expansion and contractittre ecoregionsin addition, we
investigated interactions between #eoregiorfactor and continuoudroughtrelatedcovariates to

evaluate the hypothesis that the effectsliohatic conditionsvariedfrom ecoregion to ecoregion

Sampling Design and Field Surveys

Our sampling design and field methodology are detéiedlcDonald et al(2014 and
Hagen et al(2016) anl summarized herdcDonald et al. (2014)sed a spatially balanced
sampling procedure to select-kf x 15-km grid cells to survefor LEPC The survey effort
varied annuallyand by ecoregigrbutapproximately\250' 300total grid cells were surveyed each
year McDonald et al. 2014agen et al. 2016WWe subdividedeach grid celinto four quadrants
(7.5km x 7.5km each)During 2012 2016 the rangewide survey crevilew a single 7.5%m line
transect through each quadrant during March, April, or Mayreomided detections of prairie
chickens withinr300m of the line using a doublebserver methad EPC, geaterprairie-chickers
(Tympanuchus cupidioand their hybridgo-occurin portions of the SGPR ecoregion, but are not
reliably distinguishable duringerial surveysTherefore, orthe-ground visitsvere conductetb
verify species identification in areas where mpspecies groups were possibldcDonald et al.

2014,Hagen et al. 2016).

Statistical Analysis
Sampling framework for multi-scale occupancy

We aggregated and summarizaéata recorded in the databagsehe WAFWALEPCrange

11



wide monitoring progranfMcDonald et al. 20143uch that largescale occupancy corresponded to
thedetectionof LEPC on 15km x 15km grid cells and sma#cale occupancy corresponded to the
detectionof the species ifour quadrants(7.5-km x 7.5km) nested within the grid cell#agen et

al. 2016) The encounter history was arranged by treating indepenbsetves in the helicopter

as independdrsampling occasion® estimate the probability of detectiidagen et al. 2016We
pooled the encounters of LEPC across the observer in thddfbseat and the pilot ithe front

right seat (first occasion or searc8)milarly, we pooled the encounters across the observers in the
backleft seat and baekight seat (second occasion orre#. This yielded an encounter history
with two occasions or searches of a quadriat example, consider the sampling situation with
two survey occasion®ne eactior the front and backseatobserversrespectivelyandfour
guadrants withimgrid cell i, andencounter historid; = 01 11 00 00 (O = nedetection and 1 =
detection). In this example, LER@redetected by the bagdeat observers in quadrdntoy the

front- and backseat observers in quadrahtand were not detected in quadradits 4

Implicit dynamics multi-scale occupancy

We estimated the detection and occupancy probabilitideedfEPCusing thamplicit
dynamics(MacKenzie et al. 2006)ersion of thanulti-scale occupancy mod@lichols et al. 2008,
Pavlacky et al. 2012Yhe multiscale occupancy model provides inference to the relationship
between occupancy patterns and covariates of interest at two spatialAcmeds select habitat
at multiple, hierarchical spatial scales (Hutto 1985), so understanding occupancstte
multiple spatial scales is imperative for the successful management of wildlife and their habitats
(Chalfoun and Martin 2007The model allowed estimation tifreeparameters that corresponded
to each level in thiaierarchical ampling design front- and backseatobservers nested within 7.5

km x 7.5km quadrants to estimate detection, quadrants nested wittkim 3615km grid cells to

12



estimate smalscale occupancy of quadrants, and grid cells nested vetioiregiongo estimate
largescale occpancy of gridcells. The parameters of the model wrethe probability of
detectionpy, for observek, quadrang, grid celli and yeat given the quadrant and grid cell were
occupiedn yeart; (2) the probability of smatt ¢ a | e 0 g, éougpaanang, grid delli and
yeart given the grid cell was occupiéd yeart; and(3) the probability of largs c al € o0 c,cup anc
for grid celli and yeat. The assumptions of the mu#icale occupancy model warte unrmodeled
heterogeneity in therpbabilities of detection and occupancigsure ofeach quadrant to changes
in occupancy over the observer occasiamiependence dhe detections dfEPCat each
guadrantandthatthe target species were never falsely deteditatKenzie et al. 2006yichols et
al. 2008, Pavlacky et al. 2012y e fit the models using the RMark intece (Version 2.2.4; Laake
2013,R Core Team 201 7pr program MARK(Version 8; White and Burnham 199%9Ye used
the linear model design matrix and logit link function to estimat® fherameters of the covariate
model (White and Burnhanb29).We specified each year as a separate group in the parameter
index matrix(White and Burnham 1999)sing year as a group effect constealthe parameter
space across yeagecludingoseudereplicationand undeestimation of variance.
Themulti-scalemodel can be thought of as a witlseasomobust desigiiPollock 1982)
whereby quadrants withigrid cells were primargccasions for estimating smaitale occupancy
( dgndmultiple observers were secondargcasions for estimating detection probabilgy (
(Pavlacky et al. 2012Jrom therobust design perspective, the mlodiecomposes thebservation
process into detectiop and availability (d) probabilities
larges c al e o0 ¢ c u pdaals(Nichdlsyet)al. 2008, Mprdecai et @011) Becausq;
corresponds to the occupancy probabilitgoé celli a n glcortesponds to the occupancy

probability of quadrantgiven thatthe gridcellwas occupi e d*dreprdsentsihe od u ct

13



unconditional probability oémaltscale occupancgt quadrant (Nichols et al. 2008, Pavlacky et

al. 2012)

Annual variation in site occupancy

We used the implicit dynamigdMacKenzie et al. 2006)ersion of the multscale
occupancy moddPavlackyet al. 2012, Hagen et al. 2016)investigate annual variation in large
scale (y¥cahd §dtal bc c uThacadigatesdt fortlangealeloglpancy
was composed of fivmo d el s, i nc | ud iecompgionttyear +Ecoregiort yeardaad  y (
reduced modelg écoregiont y e aecolegiony ( y ( yiatergept ongyn(dLiBewise, the
candidate set for smadicale occupancy was composedivé models, including the full model
d écoregiont year +ecoregiot year ) and eo@rdgootgahr) ddoodegions d (
d ( y e aintg¢rceat ontd (. W modeled the detection paramem®rgccording tdhree
continuous covariates for ordinal date, time after surais@annualtrend andthreefactor
covariates foecoregion observerandyear (TableAl). We excluded detection models containing
both the continuous covariate fannualrend andhefactor covariate for yeamhe candidate
modelset for detection included allilssets ofive covariates and the intercept only mopg), for
a total of 61 mdels We fit the full models for largecale and smaBcale occupancy using an
identity design matrix and sine link function to ensure converg@ftbége and Burnham 1999)
and fit all other models using a linear regression design matrix and logit link funsteofit all
subsets of the covariates and paramdi2oberty et al. 2012pr a total ofl,200modelsusing the
RMark interfacgVersion 2.2.4, Laake 2013, R Core Team 2Ga7program MARK(Version 8;
White and Burnham 1999)
We ranked the candidate set of models ugikgikeb s | nf or mati on Cri ter.|

sample siz€AIC;; Burnham and\nderson 2002), with sample sidefined by the number of
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surveyedl5-km x 15-km grid cells. We evalated support for annual variation in larggale or
smalktscale occupancy using evidence ratios and cumulativewéights for balanced model sets
([ws(j)]; Burnham and Anderson 2002Ve determined support for detection coates using
variablesupportfor unbalanceano d e | s e t s ; =a[w/@-w)]/[d/{1-H)]g wherew; iDthe
cumulativeAIC . weight and is the frequencyf thecovariate in the model setDoherty et al.
2012)V a | u e; 3> lindlicatesupport for covariatg valuesy;a 1 in@omcleisive, and values
9 << lindicate little support for covariate(Doherty et al. 2012)

We evaluated effect sizend conditiona0% confidence intervaléCls) for the year factor
from high ranking models using the intercept for year 2012bgratameters for yea2)13 2016
with respect t®. We model averaged yeapecific estimates of larggcale or smalscale
occupancy f or méidwhiclstheweart factorgeeurr@urnham and Anderson

2002)

Range-wide relationships between covariates and multi-scale occupancy

We used the implicit dynami¢MacKenzie et al. 2008)ersion of the multscale
occupancy moddPavlacky et al. 2012, Hagen et al. 20t®6investigate covariate relationships for
larges cal e (y-3cahd §6dial bc c uWesed gll raogevide date intiefaup C
ecoregios from 2012 2016(McDonald et al. 2016)ut did not use the auxiliary datallected
within the SGPR and SOPR#&oregios during2015(Adachi et al. 2015, Hagen et al. 20183
above, ve fit the models using the RMark interfadersion 2.2.4, Laake 2013, R Core Team
2017)for progam MARK (Version 8; White ad Burnham 1999)

Prior tomodel selection, we used a variabtgeening step to identifyotentialcurvilinear

guadratic relationships for continuous covariates,taaelay interactions between covariates

each parametefo evaluate quadratic covate relationshipswe fit univariate b, + b,x; and
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quadratic b, + b, x + b2><,-2 models foreachcovariate; and to evaluatevo-way interactionsye
fit additive b, + b x +b,& and multiplicative b, + b,x; + b, X+ bsxi*xj models for covariates

andj. We used informatiottheoretic model selectigiBurnham and Anderson 200@)evaluate
supportfor quadratic covariate reianships and selected the quadratic relationship fdryeinto
the analysis wheAIC. waslower for the quadratic relationship than the una@rirelationshipin
a similar fashion, we selectedveo-way interaction for entry into the analysis when AW&as
lower for the multiplicative model than the additive model.
Forlargescal e occupancy (y), we fit the quadrat
constantsmals c al e 0 c cHeqgregionand dedettionda(Observer HEcoregion+ Year)
We evaluatedjuadratiaelationshipdor 12 covariates and investigatédl ineractions fotarge
scale occupancyVe foundsupport foreightquadratic relationships and 39 interacticarsdwe
included thesin the model selectiofor largescale occupancgiong with the univariate and
additive models.
Forsmals cal e occupancy (d), we fit the quadrat
consantlarges c al e 0 c ¢ ueprpandcdgtectionh atQbgelver HEcoregion+ Year) We
investigated quadratic relationships $mvencovariates and evaluated 12%iractions fosmalt
scale occupancyVe foundsupport fothreequadratic relationships ardd. interactionsandwe
includedthesein the nodel ®lection for smatkscale occupancglong with the univariate and
additive modelsFor detectionff), we fit the quadratic and interaction models while holding
constantlargss c al e o0 c cYeprpandcspaibacta | ye( o ¢ cHequegioncWwe at d (
evaluatedjuadratic relationships fdive covariates, and investigated 14 interactiongietection
We found no evidence of quadratic relationshipsiteractionsand included onlghe main effects

in model selection fathe detectionparameter
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Range-wide model selection

Model selectiorproceduresncrease in complexity when models contain multiple
submoded and when research objectives require modeling the effect of multiple, potential predictor
variables(Bromaghin et al. 2013Yhemulti-scaleoccupancy model we used is composkthree
separatsubmoded: largescale occupancy{, smaltscale occupancyd), and detection
probability @) (Nichols et al. 2008, Pavlacky et al. 2012, Hagen et al. 20Adeover, our
objectives necessitated modellipgd, andp as functions ofmultiple predictor variablesNe
therefore adoptedtavo-staged modetelection approach to first select plausible structures for each
submodeli.e., thesubmodektage), then to consider albssible combinations of plausible
submodesktructures (i.e., the fulhodel stage).

We used plausibleombinations model selecti¢gBromaghin et al. 2013p determine the
mostlikely drivers of LERC occupancy awo spatial scales while accounting for incomplete
detection The plausiblecombinations approagiroceededn two stepsFirst we identified
plausible covariate relationships for eaengmeter independently, and second we comlatied
modé subsets of theubmodesd across parametetisidentify parsimoniougull-models
(Bromaghin et al. 2013)-or each parameter, we selected highghtsubmoded with AIC; weight
w; > 0.01 and highikelihood submodes with-2log(fl) < maximum[-2log(fl) of high-weight
model§ for entry into the second step of the plausitenbinations model selection analysis
(Bromaghin et al. 2013)

In the first step of plausible combinations model selectiorgamstrained the candidate set
of modds by omittingsubmoded wi t h correl at ed cOMedflaggedht es ( Pea
submoded with diminutive (<0.0000) standard erroréSE), andsubmoded withsmall(< 0.5) or

large(>5)t-r at i os ( b/ S Hnadditionr weicoansranedthamdoate set of models by
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omitting submodes with redundant covariates, irrespective of the magnitude of correlation
Redundant covariates were definedhasserepresenting similar biological hypotheses with-non
exhaustive and neexclusive classificatiar-or example, we did not allow covariates for the
landcoverof grassland and of native habitat in the same model bettasexhibited considerable
overlap in area¢xtent (TableAl). Finally, weexpanded the candidate set of ned® appending
submoded thatreplaced the main effects Hye supported quadratic relationships for covariate
andtwo-way interactions for covariatésndj. For example, we evaluated main effects models,
such as d(Ecoregion + CRP + Groams d)d(&lcammge gwiotnh -
Grass + Ecoregion * CRP + Ecoregion **+Grass)]
Grass + Grasy) models Following the above example, we also evaluated reduced interaction
[ d( Ecoregion + CRP + Grasisn+£LRREGasserdgEcorgion* CRP) |,
Grass)] and quadrat i &+ [GIr(aEscso)r,e gd (oFhc otr eCgRiPo n+  +C RE
Gras$)] models.

In the first step of plausible combinations model selection, we ran all subsets of 29
covariatedor larges ¢ al e o0 ¢ ovithpmanaxanmym dgthyeecovariates permodels while
holdingconstant smalé ¢ al e o0 ¢ cHeqregionanyd detectiordaf(Observer +Ecoregion+
Year), resulting in a candidate seBg249 modelsFor smaliscale occupanc (wé jan all
subsets of 19 covariates with a maximunfionfr covariates per model while holding constant
largescaleo ¢ ¢ u p a n ear) ardtdetegtionyatObserver +Ecoregion+ Year), resulting in a
candidate set of 16,2X8odels For the detectiofp) parameter, we ran all subsetsbfcovariates
with a maximum ofour covariates per model while holding constant lasgale occupancy at
y Year)ancsmalls c a|l e o0 c cHegregioncresultagtin acdndidate set of 460dels

In the second step of tipausible combinations model selectiore combined all subsets
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of thehigh-weightandhigh-likelihood submodes across paramete(Bromaghin et al. 2013jor a
total of40 modelsWe ranked the candidate set of madasing AIG, and evaluated support for
covariate effects on larggcale occupancy, smatale occupangynd detectiomsing AIC,
weights(Burnham and Anderson 2002Ye illustrated the direction of effects of covariates at the
range wide level usinghodel averaged predictions of largeale ocupancy, smalscale
occupancyand detection fothe candidateset of models andstimated unconditional 90% Cisr
the predictiongBurnham and Anderson 2002Ye mademulti-model inference from the entire
candidate set using cumulative AMgeights for balanced model sets (Burnham and Anderson
2002)and variablesupportfor unbalanced model s€f@oherty et al. 2012We evaluated effect
sizesfrom the topranking modelsisingb parameter$or thecovariats and conditional 90% Cls
with respect t®.

We limitedthe number of alsubset covariate modelsy allowinga maximum othree
covariats inmodels for largescale occupancy arfidur covariates inmodels for smalkcale
occupancyBecausef the limitswe imposed on the maximum number of covariates allowed for
priori model selectionwe ranan additionakxploratory model selection analysisdetermine if
the data supported models with greater complexity thalintits imposed bythe a priori analysis
We added eacbf the candidatecovariats oneat a timeto the topa priori selectednodels andwe
evaluated all subsetd the amendedubmoded. We fitted a total 0f8,526 models, includinghe
basesubmoded for each parametewWe selected the models using the model selection procedure
outlined aboveWe ranked the candidate set of models using.AlG evaluated support for the
covariates using cumulative Al@eights for balanced model sets (Burnham and Anderson.2002)
We evaluated effect sizes and conditional 90% CI for the covér@iefficients with respect 0.

We model aeraged estimates of largealeorsmals cal e occupancy fog all
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< 4 (Burnham and Anderson 2002)

Mapping the range-wide occupancy distribution

We model averaged the predictions oflasge al e (y-¥3cahd édpl bccupan

according to covariate values in the sampling fréond.5-km x 15km grid cells and.5-km x

7.5km quadrants, respectiveiVe multiplied the conditional estimates of sradhle occupancy

(J j) for each of th¢ quadrants in grid cellby the corresponding estimate of laigale occupancy
() to arrive at the unconditional estimatésmallscale occupancy (z ¢ ) for all quadrants in

the sampling framéNichols et al. 2008, Pavlacky et al. 201@je approximated th8Efor the
modelaveraged unconditional estimate of sasaihle occupancy using tdelta methodPowell

2007) We estimated theoefficient ofvariation (CV) for the unconditional estimates of small

scale occupancy to quantify the uncertainty aroungbtédicted occupancy distributioAs some
covariates were timearying, we used covariate values for the year 2016 for the map of predicted

occupancy presented herein.

Ecoregional relationships between covariates and multi-scale occupancy

We used the sandataset for the ecoregional modelling effort as previously described for
the rangewide modelling effortBecause of the geographic variation in LEPC habitats,
distribution, and abundance, we hypothesizedgbate threavay interactions may exist between
covariates in the rangeide models that were not adequately considered in the analysis of the
combined data. Wimcludedmodels with tweway interactionsvhen fitting models t@coregional
subsets of the data obtainadditionalinsight into wtether thecovariateqor an interaction of two
covariates) that wem@ost predictive of occupanagariedwithin ecoregionsandeven if they did

not, whether the effect of a given covari@ean interaction of two covariatdsad a consistent
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relationship withoccupancyacross ecoregion®Ve thereforgepeated the mutscale occupancy

analysis, analyzing theath from each ecoregion independently.

Ecoregional model selection

We again usethetwo-staged modetelectionprocedureof the plausiblecombinations
approach tanodel selectiofiBromaghin et al. 2013p determine the mostfluential covariate
drivers of LEPC occupancy #tetwo spatial scales within each ecoregion, while accounting for
incomplete detectiarWe firstselecedplausible structures for eashbmodeb f y , p. When a n d
fitting the initial models to identify plausible structures forlasge al e occupancy (Yy),
smalls cal e occupancy submodel to d( .pjObsermed t he de
Year). When fitting initial models forsma c al e (d) occupa-scaly, we fi xe
occupancy submodel to y(Year ) aObterverhtr&eadet ect i C
When fitting initial models for detection probabilitg)( we fixed tle largescale occupancy
submodel to y( ¥eaarl)e arcdk utphaen cyymaslulbo model to d( .
The ecoregiosspecificdatasets required more stringent screening criteria to accommodate
poor model stability and spurious results due to-@aameterizatiogiven the relatively smaller
amounts of data available to the modielparticular, the relatively small number of LEPC
detections irthreeof thefour ecoregions with low abundancetbé LEPC(McDonald et al. 2014)
required special attentiokVe initially investigated allowing up tsix covariates in each submodel,
but many models had difficulty converging on stable estim@teameliorate overfitting, we
reduced the number of covariates we considered in each submodel, depending on the ecoregion

(Table 1).
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Table 1. Summary of the number of covariates allowed during the plausinibinations stage of
model selection for mukscale occupancy models fit to ecoregional subsets of the lesser-prairie
chicken data from the range@de monitoring progran2012 2016 Themulti-scale occupancy

model included submodels for largeale occupancfy ) smaltscale occupandid ,)and detection
probability (p). When a quadratic effect was included, the main effect for that covariate was also
included, resulting itwo covariates in the model for each quadratic téifhen an interaction

effect was included, the main effect for each interacting covariate was also included, resulting in
threecovariates in the model for each interaction tdfcoregion acronyms are dadd inFigure

1.

Submodel
Ecoregion _ Y d ] p_
1(SOPR) 05, with O3 main o 3 O5, withO3 main
effects effects
O 2, with 10 2, with 10 2, with
2 (SSPR) or interactions or interactions or intergctions
3 (MGPR) 03 o 3 O5, withO3 main
. R . effects
4 (SGPR) 05, with O3 main o 3 O5, withO3 main
effects effects

We identifiedthe highweightand highlikelihood submoded (Bromaghin et al. 2013;
defined as in the rangeide analysis) for eagharametef i . e . , p),then fitled allgosgible
combinations oplausiblesubmodelsWe identified problematic multicollinearity among candidate
covariates based on the combination of condition index and the regression coefficient variance
decomposition maitx (Hair, Jr. et al. 2010)We removed modelsom considerationvhen the
condition index wal®ecOmb®sand otnh @ Thegerthiregholden wa s
values were conservative (common values are 30 and 0.9, respectively; Hair 20Ed)al.
resulting in the removal of models with severe or even moderate levels of multicollinearity among
predictor variablesAs in the rangavide modelling effort, we omitted any model that included
redundant covariates or covariates with high pairnise @ e | at i ojm> 0.6)Paedawme s o n 0 s

removed models from consideration that had inestimablgel coefficient®r exhibited instability

in the estimated coefficients evidenced b$E < 0.00001, ot-ratios < 0.5 or > 5.0Ne then
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ranked theesultingcandidate set of modelsy AIC. (Burnham and Anderson 2002Ye
calculated meases of variable support using the same Doherty et al. (2012) calculations as in the
rangewide analysis

Rat her than base our infer encemodehinfaenceel| ect €
methods tancorporate modeselection uncertainty intestmates ofthe effect that individual
covariates had op or d (Burnham and Anderson 2002Ye illustrated the direction and
magnitude otheeffects of covariates by graphing the medetraged predicted valuesybr d
(with unconditional 90%CIs) acrosghe observed range of the covariate of intek&& computed
modelaveraged predictions using all models within the confidence set of models (i.e., models with
PA I €2), including models that did not stain the covariate of interest (Burnham @mtlerson
2002. As a secondary, exploratory level of inference that did not rely on model averaging, we
examined thé coefficient and conditional 90%I for the covariate of interest in the highest
ranked model that contained the covaridtdas secondarievel of inference may be less reliable
given it ignored modetelection uncertainty; however, we pige these results to allow some
insight into the occupanegovariate relationship for covariates that were in the confidence set of

models, but that exhited no discernable effect in the modekraged results.

RESULTS

Annual Variation in Range-Wide Site Occupancy

We found little evidence for annual variation in the lasgale occupancy of the LEPC at
15km x 15-km grid cells (Table B). According to tle evidence ratio, the higheasinking model
forconstantarges c al e occupancy aicetinoes moreyikely thas the hyghest) | wa
ranking model i nclYeair n g:=é@sbmyCWY.008]ThefclanalatioerAlG] y (

weight for the effect of year on largeale occupancy was.(yean = 0.095, providing very little
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support forthe year factarThe modelaveraged estimate of mean laiggale occupancy across
yearsway =0 . [SIEy = 0;CI0=3.26, 0.36].

We found Imited evidence of annual variation in the srsakle occupancy of the LEPC at
7.5km x 7.5km quadrants (Table B Figure?2). According to the evidence ratio, the highest
ranking model including only thecoregioneffectonsmals c al e o c Ecorpganiiwas [ d (
threetimes more likely than the highest ranking model including the additive effects of year and
ecoregion[ ddcoregiont Year); Table B1]In addition, the evidence ratio indicated the highest
ranking model for the additive effect of year aedregion] @&d¢oregiont Year)] was 45 times
more likely than the multiplicative effects of year aedregion[ dE¢oregior* Y ear);w; = 0.001]
The cumulative Algweight for the effect ojear on smalkcale occupancy was.(Year) = 0.262
providing modst support for the effect of year on srsthle occupancyiowever, the cumulative
evidence ratio indicated the effect of year on sisedile occupancy walsreetimes more
important than the effect of year on laigale occupancy.(Year) = 0.095] Theadditive effect
of year in the O rankedmo d e | . € 2005) indicated smabcale occupancy was lower in year
2013 than in 2012, but was not appreciably different from year 2012 in 2019 and 2016
(Table B2,Figure2). In addition, the smaicale occupancy of the LEPC was greater irSiG®R

ecoregiorthan in theMGPR, SSPRandSOPRecoregios (Table B2Figure?2).
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Figure 22 Thesmals cal e occupancy A{hdcken loydcoragiorand yeardostieer
(A) Shinnery Oak PrairigB) Sand Sagebrush Prair(€) Mixed Grass Prairie ar({@®) Shortgrass
CRP/ Mosaic Prairie from the rangede monitoring progran2012 2016 The filled symbols are
model averaged estimates of srsdhle occupancy and the error bars are unconditional 90%
confidence intervals

We found considerable evidence for the effects of obseamayaltrend, time after sunrise
and ordinal date on ¢hdetectiorprobabilityof theLEPC (Table B1Table B3 Figure3). The
supportof the detection covariates was greatest for obsesygt (= 2.50x 1), followed by
trend Owena= 3.73), time after sunriseine = 2.50), ordinal datedfaie= 0.95),ecoregion(decoregion=

0. 69) aye 0.18pThe detéction of the lesser praiobicken was greater for basleat

observers than frordeat observers, and detection increamsest survey yearsyith increasing time
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after sunriseard ordinal date (Table B3igure3).
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Figure 3. Theprobability ofdetection ) of the lesser prairiehicken by(A) observer, andB)

year, (C) time after sunrise an(®) ordinal date for the baekeat observers from the Shortgrass

Prairie CRP/ Mosai&coregionof rangewide monitoring progran2012 2016 The filled symbols

and bold trend lines are model averaged estimates of detection for models including that covariate
at mean values of other covariates in the model, and the error bars and bounding lines are
unconditonal 90% confidence intervals.
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Range-wide Multi-scale Covariate Relationships

In the first step of plausibleombinations model selection, we identifieeb plausible
submoded for largescale occupancy (Table CHowever, we did not consider tsecondranked
model containing the quadratic relationship of CRP to be a competing,rhedalis¢he addition
of thequadratic term did na@ppreciably decreaske-2log(fl) valuefor the mode(Arnold 2010)
For this reason, we considered a single plausibenodefor largescale occupancy[( CRP +
GrassPath + Shrub)] in the second step of the plausible combinations models selection analysis.

We identifiedthreeplausiblesubmoded for smaHlscale occupancyl@ble C3. However
we did not consider thiird-rankedmodel contaimg the quadratic term for ggsland aa
competing modg|Table C3, because¢he addition of theuadratic term did nappreciably
decrease the2log(fl) valuerelative to the ?' rankedmodel(Arnold 2010) For this reason, we
considered only the tapgvo models in the second step of the plausible combinations models
selection analysis (Table C2)e identified 20 plausiblsubmoded for detectionTable C3, and
we considerethese models in the second step of the plausible combinations models selection
analysis The supportof the detection covariates was greatest for obsenygt{e= 2.53% 1),
followed by trend §yeng= 3.24) and time after sunriseine. = 1.11), ad therewas lessupportfor
ordinal date fyaie= 0.66),ecoregion(decoregion= 0.51)a n d  y,&a0.21)( 2

In the second step of plausible combioat model selection, we ran aillbsets of plausible
submoded across parameters, resulting in 4@eie Thetop-rankedmodel for the multiscale
occupancyelationships othe LEPCcontained the effects of shrubland, grassland patchaside
CRP on largescale occupancy, the interaction between CRReaackgion shrubland, and
interaction between the quadratic term for grasslanceaeockgioron smaliscale occupancy, and

the effects of observer, annual treadd time after sunrise on detectidrable C4. The2" ranked
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model that omitted the quadratic term §passland and included the interaction between the main
effect for grassland aretoregiorfor smaltscale occupancy showed nearly equal support as the
highest ranking modelrable C4. Overall, we found considerable model selection uncertainly and
13cmdi date mode<RfabwC4d h @mAI C

The largescale occupancy adfie LEPCincreased with increasing shrubldaddcovey
grassland patch sizandamount ofCRRenrolled landFigure4). The 90% Cls for these effects

did not covelO, indicating larg@ and precise effect sizes for these covaridtaklé C5 Table C§.
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Figure4. Thelarges c al e occupancy (clyickenatfl5 A5knegridcelslsyer pr ai
the (A) percentage (%) of shrublafehdcover (B) mean patch size of grassldaddcover(km?),
and(C) percentage odrea enrolled in th€onservation Reserve Program (CRP) from the range
wide monitoring progran012 2016 The bold trend lines are model averaged estimates of large
scale @cupancy at the mean values of other covariates in the model and the bounding lines are
90% Cls.
The smaklscale occupancy of the LEPC showed a large increase with increasinmts
of CRRenrolled landn the SGPRecoregion smaller positive effects in tt8SPRandMGPR
ecoregios, and a much smaller of effect of CieRrolled landn the SOPRecoregionFigureb).

The interaction between CRP amtbregionndicated the slope of the CRP effect was much lower

in theSOPR SSPRandMGPR ecoregios than the slope of the CRP effect in 8@PRecoregion
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(Table C5 Table C§. The 90% Cls for the interaction terms did not cdyendicating large and

precise effect sizes for these multiplicative effetab{e C5 Table C§.
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Figure 5. Thesmals cal e occupancy A{hickenat?.5%.5%kmquadeastsbyr pr a
the percentage (%) afea enrolled in th€onservation Reserve Program (CRP) in(fe

Shinnery Oak PrairigB) Sand Sagebrush Prair{€) Mixed Grass Prairie ar{®) Shortgrass

CRP/ Mosaic Prairie from the rangede monitoring progran2012 2016 The bold trend lines

are model averaged estimates of sreadlle occupancy at the mean values of other covairate

the model and the bounding lines are 90% Cls.

The smallscale occupancy of the LEPC increased with incredamdgoverof shrubland

(Figure®6). The slope of the positive effect of shrubland was identical iecaltegios, butthe
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effectwasmorepronounced in th&OPRecoregiorbecausehis ecoregion included areas of
relatively highershrublandandcover(Figure6). The 90% Cls for the effect of shrubland did not

coverQ, indicating large and precise effect sizes for this covaria@blé C5 TableC6).
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Figure 6. Thesmals cal e occupancy A{hickenat?.5%.5kmquadeastsbyr pr a
the percentage (%) of shrublalathdcovelin the (A) Shinnery Oak PrairigB) Sand Sagebrush

Prairie, C) Mixed Grass Prairie ar(®) Shortgrass CRP/ Mosaic Prairie from the rangge

monitoring program2012 2016 The bold trend lines are model averaged estimates of-sozé

occupancy at the mean values of other covariates in the modeleanouthding lines are 90% Cls.

Thetop-rankedmodel included the interaction between the quadratic term for grassland and

ecoregiorfor smallscale occupancyl@ble C5. The cumulative Algweights indicated the
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interaction between the quadratic term foaggland andcoregiorfw.(j) = 0.48] and the model
with the interaction between linear term for grasslandesadegiorw.(j) = 0.52] had nearly equal
probability of occurring in the best moddlable C1). We found little evidence for the quadratic
effeds of grassland on the smaltale occupancy afhie LEPC in theSGPRandMGPR ecoregios
(Table C5. The interaction between the quadratic of grasslandeaacegiorshowed a large
negative quadratic effect of grassland in the B@Eoregiorand a smaller negative quadratic
effect of grassland in the 8R ecoregionFigure7, Table C5. In the SOR ecoregionthe
estimatedsmallscale occupancy die LEPCwas highest a@84% grassland landcoveand

declined thereafteigure7). In the SSPRecoregiontheestimatedsmallscale occupancy of the
LEPCwas highest @d4%grassland landcoveand declined thereaftefigure7). The 90% Cls for
the quadratic interaction terms of grassland did not ddvedicating large and precise effect sizes
for these multiplicative effect§ @ble C3.

The 2" rankedmodel exhibited nearly equal support as the topednmodel and included
the interaction between the main effect of grasslandeaaregion(Table C§. The smaliscale
occupancy ofhe LEPC showd a large linear increase with increasiagdcoverof grassland in
the SGPRecoregiona smaller positive effect in tiMGPR ecoregion anddiminutive effects of
grassland in the SGPand SSPRecoregios (Figure8, Table C§. The interaction between
grassland andcoregionindicated the slope of the grassland effect was nesdin theSSPR
SOPR andMGPR ecoregios than the slope of the grassland effect i@’ Recoregion(Figure
8, Table C§. The 90% Cls for the interaot terms did not covél, indicating large and precise

effect sizes for these multiplicative effectable C§.
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Figure 7.Thesmals cal e occupancy A{hickenat?.5X.5kmquadeastsbyr pr a
thepercentage (%) of grasslalmhdcovetin the(A) Shinnery Oak Prairie an@) Sand Sagebrush

Prairie from the range&iide monitoring progran2012 2016 The bold trend lines are model

averaged estimates of smatlale occupancy for models containing qo@dratic effect of

grassland at the mean values of other covariates in the model and the bounding lines are 90% Cls.
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Figure 8. Thesmals cal e occupancy A{hickenat7.5%.5kmquadeastsbyr pr a
the percentage (%) of grassldaddcovetrin the(A) Shinnery Oak PrairigB) Sand Sagebrush
Prairie,(C) Mixed Grass Prairie ar(®) Shortgrass CRP/ Mosaic Prairie from the ranige
monitoring program2012 2016 The bold trendines are model averaged estimates of sstle
occupancy for models containing the main effect and quadratic effect of grassland at the mean
values of other covariates in the model and the bounding lines are 90% Cls.
Thetop-rankedmodel ofdetectionprobability (p) included the effects of observer, annual
trend and time after sunrisd ble C4. Observer occurred in every model and was the covariate
with the most support for detectidollowed by trend $yeng= 2.73) andtime after sunrisedfme =

1.51) Theecoregion(decoregion= 0.87), ordinal datedfae= 0 . 6 3 ) , yeadE 0.19) cpvareates ( 0

hadlesssupport The detection oEEPCwas greater for baekeat observers than fresgeat
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observersand detection increaseder survey years amith increasing tine after sunriseHigure
9, Table C5 Table C§. The covariate effects qnare additive to the ecoregion factor; therefore,
graphs op for all ecoregions are identical except with different intercepts. For simplicity, we

present graphfr only one ecoregion ifigure9.

(A) (B)

(©

Figure 9. Theprobability ofdetection ) of the lesser prairiehicken by(A) front- and backseat
observers in the Shortgrass Prairie CRP/ MoBaaregion and(B) annual trend anflC) time after
sunrise for the baekeat observers from rangede monitoring progran2012 2016 The additive
covariate effects for thetherEcoregionintercepts weréhe samer(ot show. The filled symbols

and bold trend lines areadel averaged estimates of detection for models including that covariate
at mean values of other covariates in the model, and the error bars and bounding lines are
unconditional 90% confidence intervals.
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